
Department of the Army
Pamphlet 73–7

Test and Evaluation

Software Test
and Evaluation
Guidelines

Headquarters
Department of the Army
Washington, DC
25 July 1997

Unclassified

SUMMARY of CHANGE
DA PAM 73–7
Software Test and Evaluation Guidelines

This new Department of the Army pamphlet--

o Implements the policies and procedures contained in Department of Defense
Directives (DODD) 5000.1, DODD 8000.1, and DODD 5000.2-R and Army Regulation
(AR) 25-3 and AR 73-1 (paras 1-2 and 1-4).

o Provides an overview of the software test and evaluation (T&E) process (chap
3).

o Details software T&E responsibilities (para 4-3).

o Describes the software T&E process from pretest activities (chap 5) through
software and system testing (chap 6), fielding and transition to maintenance
(chap 7), and post deployment software support (chap 9).

o Provides guidance for integrating software metrics into software T&E and
continuous evaluation procedures (chap 10).

Headquarters
Department of the Army
Washington, DC
25 July 1997

Test and Evaluation

Software Test and Evaluation Guidelines

Department of the Army
Pamphlet 73–7

H i s t o r y . T h i s p u b l i c a t i o n i s a n e w D A
p a m p h l e t . T h i s p u b l i c a t i o n h a s b e e n
r e o r g a n i z e d t o m a k e i t c o m p a t i b l e w i t h t h e

A r m y e l e c t r o n i c p u b l i s h i n g d a t a b a s e . N o
content has been changed.
Summary. This pamphlet provides guidance
and procedures to implement test and evalua-
tion policy for materiel and information sys-
tems as promulgated by AR 73–1. It provides
detailed guidance for preparing and conduct-
i n g a t e s t a n d e v a l u a t i o n p r o g r a m f o r
software–intensive Army systems.
Applicability. The provisions of this pam-
phlet apply to the Active Army, the Army
National Guard, and the U.S. Army Reserve.
P r o p o n e n t a n d e x c e p t i o n a u t h o r i t y .
The proponent of this pamphlet is the Deputy
Under Secretary of the Army (Operations and
Research) (DUSA (OR)). The DUSA (OR)
has the authority to approve exceptions to
this pamphlet that are consistent with law and
controlling regulation. The DUSA (OR) may

delegate this authority, in writing, to a divi-
sion chief within the proponent agency in the
grade of colonel or the civilian equivalent.

Suggested Improvements. Users are in-
vited to send comments and suggested im-
p r o v e m e n t s o n D A F o r m 2 0 2 8
(Recommended Changes to Publicatons and
Blank Forms) directly to ATTN DACS–TE,
T E S T A N D E V A L U A T I O N M A N A G E -
MENT AGENCY, OFFICE OF THE CHIEF
O F S T A F F , 2 0 0 A R M Y P E N T A G O N ,
WASHINGTON DC 20310–0200.

Distribution. Distribution of this publica-
tion is made in accordance with initial distri-
bution number (IDN) 095498, intended for
command levels D and E for the Active Ar-
my, the Army National Guard, and the U.S.
Army Reserve.

Contents (Listed by paragraph and page number)

Chapter 1
Army Software Test and Evaluation, page 1

Section I
General, page 1
Purpose • 1–1, page 1
References • 1–2, page 1
Explanation of abbreviations and terms • 1–3, page 1
Policy basis of software T&E • 1–4, page 1
T&E and risk management • 1–5, page 1

Section II
Continuous Evaluation, page 2
Background • 1–6, page 2
Objective of CE • 1–7, page 2
Scope of CE • 1–8, page 2
CE activities and levels of evaluation • 1–9, page 2

Section III
Software versus System Testing, page 2
General • 1–10, page 2
Test levels • 1–11, page 3

Section IV
Organization and Approach, page 4
Pamphlet organization • 1–12, page 4
Approach • 1–13, page 5

Chapter 2
Terms and Definitions, page 6
General • 2–1, page 6

Terminology cross reference • 2–2, page 6

Chapter 3
T&E as Part of Acquisition and Development, page 10

Section I
Basis, page 10
General • 3–1, page 10
Software T&E program requirements • 3–2, page 10

Section II
Test Program Considerations, page 10
The acquisition strategy • 3–3, page 10
The type of system • 3–4, page 11
Target environment and intended end use • 3–5, page 11
The software development strategy • 3–6, page 11
Prototypes • 3–7, page 12
Security certification • 3–8, page 12
Metrics and T&E • 3–9, page 12
Disciplines essential to effective T&E • 3–10, page 12

Section III
Software T&E Methods, page 12
Tools and related techniques • 3–11, page 12
Static analysis techniques • 3–12, page 13
Dynamic analysis techniques • 3–13, page 13
Symbolic testing • 3–14, page 14
Formal analysis • 3–15, page 14

Chapter 4
Building the Software T&E Team, page 15
General • 4–1, page 15
Objective • 4–2, page 15

DA PAM 73–7 • 25 July 1997 i

Unclassified

Contents—Continued

Organizations and responsibilities • 4–3, page 15
Software T&E team members • 4–4, page 15
Independence in software T&E • 4–5, page 16
Working groups • 4–6, page 16

Chapter 5
Pretest Activities, page 20

Section I
General, page 20
Purpose • 5–1, page 20
Scope • 5–2, page 20
Objective • 5–3, page 20

Section II
Planning and Oversight, page 20
General • 5–4, page 20
Objective • 5–5, page 21
Entry criteria • 5–6, page 21
Test activities • 5–7, page 21
Test plans • 5–8, page 21
Other plans • 5–9, page 21
Evaluation activities • 5–10, page 22
Metrics • 5–11, page 22
Decision criteria • 5–12, page 22

Section III
The Software Development Environment, page 22
General • 5–13, page 22
Objective • 5–14, page 22
Entry criteria • 5–15, page 22
Test activities • 5–16, page 22
Evaluation activities • 5–17, page 22
Metrics • 5–18, page 23
Decision criteria • 5–19, page 23

Section IV
System Requirements Analysis, page 23
General • 5–20, page 23
Objective • 5–21, page 23
Entry criteria • 5–22, page 23
Test activities • 5–23, page 23
Evaluation activities • 5–24, page 23
Metrics • 5–25, page 24
Decision criteria • 5–26, page 24

Section V
System Design, page 24
General • 5–27, page 24
Objective • 5–28, page 24
Entry criteria • 5–29, page 24
Test activities • 5–30, page 24
Evaluation activities • 5–31, page 24
Metrics • 5–32, page 24
Decision criteria • 5–33, page 25

Section VI
Software Requirements Analysis, page 25
General • 5–34, page 25
Objective • 5–35, page 25
Entry criteria • 5–36, page 25
Test activities • 5–37, page 25
Evaluation activities • 5–38, page 25
Metrics • 5–39, page 25
Decision criteria • 5–40, page 26

Section VII
Software Design, page 26

General • 5–41, page 26
Objective • 5–42, page 26
Entry criteria • 5–43, page 26
Test activities • 5–44, page 26
Evaluation activities • 5–45, page 26
Metrics • 5–46, page 26
Decision criteria • 5–47, page 27

Chapter 6
Test Activities, page 27

Section I
General, page 27
Purpose • 6–1, page 27
Scope • 6–2, page 27
Objective • 6–3, page 27

Section II
Software Implementation and Unit Testing, page 27
General • 6–4, page 27
Objective • 6–5, page 27
Entry criteria • 6–6, page 27
Test activities • 6–7, page 27
Evaluation activities • 6–8, page 27
Metrics • 6–9, page 28
Decision criteria • 6–10, page 28

Section III
Unit Integration and Testing, page 28
General • 6–11, page 28
Objective • 6–12, page 28
Entry criteria • 6–13, page 28
Test activities • 6–14, page 28
Evaluation activities • 6–15, page 28
Metrics • 6–16, page 29
Decision criteria • 6–17, page 29

Section IV
CSCI Qualification Testing, page 29
General • 6–18, page 29
Objective • 6–19, page 29
Entry criteria • 6–20, page 29
Test activities • 6–21, page 29
Evaluation activities • 6–22, page 29
Metrics • 6–23, page 30
Decision criteria • 6–24, page 30

Section V
Integration and Testing of Computer Software Configuration Items

and Hardware Configuration Items, page 30
General • 6–25, page 30
Objective • 6–26, page 30
Entry criteria • 6–27, page 30
Test activities • 6–28, page 30
Evaluation activities • 6–29, page 30
Metrics • 6–30, page 31
Decision criteria • 6–31, page 31

Section VI
System Qualification Testing, page 31
General • 6–32, page 31
Objective • 6–33, page 31
Entry criteria • 6–34, page 31
Test activities • 6–35, page 31
Evaluation activities • 6–36, page 31
Metrics • 6–37, page 31
Decision criteria • 6–38, page 32

ii DA PAM 73–7 • 25 July 1997

Contents—Continued

Section VII
System Developmental Testing (DT), page 32
General • 6–39, page 32
Objective • 6–40, page 32
Entry criteria • 6–41, page 32
Test activities • 6–42, page 32
Evaluation activities • 6–43, page 36
Metrics • 6–44, page 36
Decision criteria • 6–45, page 36
Other considerations • 6–46, page 36

Section VIII
System Operational Testing, page 37
General • 6–47, page 37
Objective • 6–48, page 37
Entry criteria • 6–49, page 37
Test activities • 6–50, page 37
Evaluation activities • 6–51, page 37
Metrics • 6–52, page 40
Decision criteria • 6–53, page 40
Other considerations • 6–54, page 40

Chapter 7
Activities Related to Fielding, page 40

Section I
General, page 40
Purpose • 7–1, page 40
Scope • 7–2, page 41
Objective • 7–3, page 41

Section II
Software Fielding, page 41
General • 7–4, page 41
Objective • 7–5, page 41
Entry criteria • 7–6, page 41
Test activities • 7–7, page 41
Evaluation activities • 7–8, page 41
Metrics • 7–9, page 41
Decision criteria • 7–10, page 42
Other considerations • 7–11, page 42

Section III
Software Transition, page 42
General • 7–12, page 42
Objective • 7–13, page 42
Entry criteria • 7–14, page 42
Test activities • 7–15, page 42
Evaluation activities • 7–16, page 43
Metrics • 7–17, page 43
Decision criteria • 7–18, page 43

Chapter 8
Ancillary Activities, page 43
Purpose • 8–1, page 43
Scope • 8–2, page 44
Objective • 8–3, page 44
Software configuration management • 8–4, page 44
Software product evaluation • 8–5, page 44
Software quality assurance • 8–6, page 44
Corrective action • 8–7, page 45
Joint reviews • 8–8, page 45
Other considerations • 8–9, page 45

Chapter 9
Post Deployment Software Support Considerations,

page 45
Purpose • 9–1, page 45

Scope • 9–2, page 45
Objective • 9–3, page 46
PDSS issues • 9–4, page 46
Controlling software changes • 9–5, page 46
Scope of testing • 9–6, page 46
Determining test support needed for independent evaluation • 9–7,

page 46
Other considerations • 9–8, page 46

Chapter 10
Army Software Metrics, page 49

Section I
General, page 49
Introduction • 10–1, page 49
Policy requirements • 10–2, page 49
Types of metrics • 10–3, page 49
Application • 10–4, page 49
Metrics program considerations • 10–5, page 49
Organization and approach • 10–6, page 49

Section II
The Army Metrics Set, page 49
Cost metric • 10–7, page 49
Schedule metric • 10–8, page 52
Computer resource utilization metric • 10–9, page 56
Software engineering environment (SEE) metric • 10–10, page 58
Requirements traceability metric • 10–11, page 59
Requirements stability metric • 10–12, page 62
Design stability metric • 10–13, page 64
Complexity metric • 10–14, page 66
Breadth of testing metric • 10–15, page 69
Depth of testing metric • 10–16, page 71
Fault profiles metric • 10–17, page 72
Reliability metric • 10–18, page 76
Manpower metric • 10–19, page 79
Development progress metric • 10–20, page 81

Section III
Relating Metrics to Management Issues, page 82
MAIS assessment illustration • 10–21, page 82

Appendixes

A. References, page 83

B. Statement of Work (SOW) Considerations, page 84

C. Metrics Data Collection Templates, page 87

Table List

Table 1–1: Policy foundation for software T&E, page 2
Table 2–1: Developmental test terminology cross–reference,

page 7
Table 2–2: Operational test terminology cross–reference, page 7
Table 2–3: Organizational roles cross–reference, page 8
Table 2–4: Documentation cross-reference, page 8
Table 2–5: Tools and techniques cross-reference, page 9
Table 2–6: Software problem/change priorities, page 9
Table 2–7: Software problem/change categories, page 10
Table 3–1: Examples of program strategies, page 11
Table 4–1: Responsibilities in T&E, page 17
Table 4–2: Software T&E team members, page 18
Table 5–1: Metrics applicable to planning and oversight, page 22
Table 5–2: Metrics applicable to software development

environment, page 23
Table 5–3: Software development environment decision criteria,

page 23

iiiDA PAM 73–7 • 25 July 1997

Contents—Continued

Table 5–4: Metrics applicable to system requirements analysis,
page 24

Table 5–5: System requirements analysis decision criteria, page 24
Table 5–6: Metrics applicable to system design, page 24
Table 5–7: System design decision criteria, page 25
Table 5–8: Metrics applicable to software requirements analysis,

page 25
Table 5–9: Software requirements analysis decision criteria,

page 26
Table 5–10: Metrics applicable to software design, page 26
Table 5–11: Software design decision criteria, page 27
Table 6–1: Metrics applicable to software implementation and unit

testing, page 28
Table 6–2: Software implementation and unit testing decision

criteria, page 28
Table 6–3: Metrics applicable to unit integration and testing,

page 29
Table 6–4: Unit integration and testing decision criteria, page 29
Table 6–5: Metrics applicable to CSCI qualification testing,

page 30
Table 6–6: CSCI qualification testing decision criteria, page 30
Table 6–7: Metrics applicable to CSCI/HWCI integration and

testing, page 31
Table 6–8: CSCI/HWCI integration and testing decision criteria,

page 31
Table 6–9: Metrics applicable to system qualification testing,

page 31
Table 6–10: System qualification testing decision criteria, page 32
Table 6–11: Metrics applicable to system developmental testing,

page 36
Table 6–12: System developmental testing decision criteria,

page 36
Table 6–13: Metrics applicable to operational testing, page 40
Table 6–14: Operational testing decision criteria, page 40
Table 7–1: Metrics applicable to software fielding, page 42
Table 7–2: Software fielding decision criteria, page 42
Table 7–3: Metrics applicable to software transition, page 43
Table 7–4: Software transition decision criteria, page 43
Table 9–1: Determining problem likelihood, page 46
Table 9–2: Determining problem impact, page 46
Table 9–3: Degree of DT/OT needed to support evaluations,

page 47
Table 10–1: Examples of software related WBS elements/

development activities, page 52
Table 10–2: CRU relation with other metrics, page 57
Table 10–3: Capability maturity model definitions, page 58
Table 10–4: Sample requirements level to technical document

correlation, page 60
Table 10–5: Recommended items for requirements traceability

metric tracking, page 60
Table 10–6: Requirements traceability relation with other metrics,

page 62
Table 10–7: Requirements stability relation with other metrics,

page 64
Table 10–8: How to compute design stability measures, page 65
Table 10–9: Design stability relation with other metrics, page 66
Table 10–10: Measures comprising the complexity metric, page 67
Table 10–11: How to compute cyclomatic complexity, page 67
Table 10–12: How to compute Halstead size measures, page 67
Table 10–13: Thresholds to minimize complexity, page 68
Table 10–14: Complexity relation with other metrics, page 69
Table 10–15: Recommended items for breadth of testing metric

tracking, page 70
Table 10–16: How to compute testing progress measures, page 70
Table 10–17: Breadth of testing relation with other metrics,

page 71
Table 10–18: Software structure attributes measured by the depth

of testing metric, page 72

Table 10–19: How to compute test progress measures for depth
attributes, page 72

Table 10–20: Depth of testing relation with other metrics, page 72
Table 10–21: How to compute average fault ages, page 73
Table 10–22: Fault profiles relation with other metrics, page 76
Table 10–23: Computed items for software/system reliability

tracking, page 76
Table 10–24: Reliability relation with other metrics, page 79
Table 10–25: Manpower relation with other metrics, page 81
Table 10–26: Development progress relation with other metrics,

page 81
Table 10–27: Metric correlation to MAIS status report

requirements, page 82
Table C–1: Cost metric data record format, page 87
Table C–2: Schedule metric data record format, page 88
Table C–3: CRU metric data record format, page 88
Table C–4: SEE metric data record format, page 89
Table C–5: Requirements traceability data record format, page 90
Table C–6: Requirements stability metric data record format,

page 90
Table C–7: Design stability metric data record format, page 91
Table C–8: Complexity metric data record format, page 91
Table C–9: Breadth of testing metric data record format, page 92
Table C–10: Depth of testing metric data record, page 93
Table C–11: Fault profiles metric record metric data format,

page 93
Table C–12: Reliability metric data record format, page 94
Table C–13: Manpower metric data record format, page 94
Table C–14: Development progress metric data record format,

page 95

Figure List

Figure 1–1: System decision milestones and life–cycle phases,
page 1

Figure 1–2: Requirements and test level relationship, page 4
Figure 1–3: Sample integrated project activity network, page 6
Figure 3–1: T&E methods and development activities, page 15
Figure 4–1: Level of T&E involvement, page 20
Figure 6–1: Software/system generic DT issues, page 33
Figure 6–2: Sample software issues and evaluation criteria,

page 34
Figure 6–3: DTRR software T&E checklist, page 35
Figure 6–4: Software/system generic OT issues, page 38
Figure 6–5: OTRR software T&E checklist, page 39
Figure 9–1: Example checklist for determining potential problems

in implementing a software change package, page 48
Figure 10–1: The Army’s software metrics, page 50
Figure 10–2: Metrics during the life cycle, page 51
Figure 10–3: Sample cost expenditure graph, page 53
Figure 10–4: Sample cost performance trend graph, page 53
Figure 10–5: Typical program schedule, page 54
Figure 10–6: Sample schedule metric graph, page 55
Figure 10–7: Sample graph of changes in activity durations,

page 55
Figure 10–8: Sample computer resource utilization graph, page 57
Figure 10–9: Example of a software requirements traceability

matrix, page 61
Figure 10–10: Sample requirements traceability graph, page 62
Figure 10–11: Sample graph of requirements discrepancies over

time, page 63
Figure 10–12: Sample graph of ECP-Ss over time, page 64
Figure 10–13: Sample design stability and design progress graph,

page 66
Figure 10–14: Example flow graph and cyclomatic complexity,

page 67
Figure 10–15: Sample cyclomatic complexity display, page 68
Figure 10–16: Sample testing progress graph, page 70

iv DA PAM 73–7 • 25 July 1997

Contents—Continued

Figure 10–17: Sample depth of testing graph of statement measure,
page 73

Figure 10–18: Sample graph of software problem history, page 74
Figure 10–19: Example of monthly PCR activity, page 74
Figure 10–20: Sample graph of average age of open faults,

page 75
Figure 10–21: Sample graph of system mean time between mission

failures, page 77
Figure 10–22: Sample graph of mean time to restore system,

page 78
Figure 10–23: Sample graph of reliability model projection,

page 78
Figure 10–24: Sample graph of manpower effort measure, page 80
Figure 10–25: Sample graph of manpower staffing profile, page 80
Figure 10–26: Sample graph of development progress, page 82
Figure B–1: Software T&E issue checklist example, page 85
Figure B–2: Sample metrics paragraphs, page 86

Glossary

Index

vDA PAM 73–7 • 25 July 1997

RESERVED

vi DA PAM 73–7 • 25 July 1997

Chapter 1
Army Software Test and Evaluation

Section I
General

1–1. Purpose
a. Function. This pamphlet is a guide for implementing software

test and evaluation (T&E) and continuous evaluation (CE) policy as
prescribed in Army Regulation (AR) 73–1 and other governing
Department of Defense (DOD) and Department of the Army (DA)
directives.

b. Scope. The material contained herein applies to all Army soft-
ware T&E performed for systems developed and/or maintained in
accordance with the AR 70 and AR 25 series of regulations. This
includes T&E associated with development and support of the soft-
ware aspects of firmware. This pamphlet supports, but does not
replace, system–level T&E guidance described in other DA pam-
phlets of the 73 series and should be used to augment them in the
specific area of software.

c. Objective. The objectives of DA Pamphlet (Pam) 73–7 are
to—

(1) Present a unified software test and evaluation process for
materiel system computer resources (MSCR) and automated infor-
mation systems (AISs).

(2) Provide implementation procedures for AR 73–1 policies re-
lated to software T&E.

(3) Describe a disciplined approach to life cycle software T&E.
(4) Serve as the Army standard for planning and implementing

software T&E. This will promote—
(a) Consistency and ease of application.
(b) Early involvement of the T&E community in the acquisition

process.
(c) Demonstration of software capabilities.
(d) Acquisition process improvements.
(5) Actively support the principles of total quality management

(TQM) and integrated product teams (IPTs).

1–2. References
Required and related publications and prescribed and referenced
forms are listed in appendix A.

1–3. Explanation of abbreviations and terms
Abbreviations and special terms used in this pamphlet are explained
in the Glossary.

1–4. Policy basis of software T&E
Army software T&E processes and practices have evolved over the
years, responding to new technologies, resource constraints, organi-
zation changes, and lessons learned. These processes and practices
require all Army systems with software, whether MSCR or AIS, to
undergo product evaluation throughout their life cycles. Department
of Defense policies for MSCR and AIS are described in DOD series
5000 and 8000 regulations. Department of Defense policy provides
the basis for Army T&E policy and procedures. The procurement
cycle milestones (MSs) and system life–cycle phases described in
DA Pam 73–7 are summarized in figure 1–1. Software–specific
events and activities are discussed in subsequent chapters. The DOD
directives (DODD) and ARs that provide the foundation for soft-
ware T&E are identified in table 1–1.

1–5. T&E and risk management
As well as describing current Army testing policies, this pamphlet
shows the relationship of software products and functions as integral
components of their larger systems. Software T&E, CE, incremental
w o r k i n g l e v e l r e v i e w s , i n c r e a s e d u s e r i n v o l v e m e n t i n s o f t w a r e
processes, software metrics, and other strategies are described as
means to increase knowledge, awareness, and control of the soft-
ware development and maintenance process throughout a system’s
life cycle. This additional insight will assist in highlighting areas of
technical risk more uniformly at earlier stages so that they may be
addressed more expediently than in the past.

Figure 1-1. System decision milestones and life–cycle phases

1DA PAM 73–7 • 25 July 1997

Table 1–1
Policy foundation for software T&E

Identification Title

DODD 5000.1 Defense Acquisition
DOD 5000.2–R Mandatory Procedures for Major Defense Acquisition Programs (MDAPs) and Major Automated Information

System (MAIS) Acquisition Programs
DODD 8000.1 Defense Information Management Program
AR 70–1 Army Acquisition Policy
AR 73–1 Test and Evaluation Policy
AR 25–3 Army Life Cycle Management of Information Systems

Section II
Continuous Evaluation

1–6. Background
a. AR 73–1 defines CE as “ ...a process which provides a contin-

uous flow of T&E information on system status and will be em-
ployed on all acquisition programs.” Through analysis of available
d a t a , C E a s s e s s e s t e c h n i c a l a n d o p e r a t i o n a l p e r f o r m a n c e ,
functionality, effectiveness, suitability, maintainability, and suppor-
tability and identifies risks. Software CE is performed by personnel
involved in software engineering, software quality assurance (SQA),
software configuration management (SCM), independent verification
and validation (IV&V), Government developmental and operational
evaluation, and software developers.

b. Continuous evaluation is fundamental to the proper manage-
ment of a system. Decisionmaking must be based upon substantive
evaluations of software characteristics, and indicators of maturity
and reliability throughout the life cycle. These evaluations are para-
mount to producing quality software which meets user needs. Fail-
ure to perform objective evaluations throughout the life cycle has
resulted in significant software deficiencies, system delays, and cost
overruns.

1–7. Objective of CE
The objective of software CE is to provide impartial assessments of
software and system progress. It is a form of risk analysis. When-
ever possible, assessments take into consideration the perspective of
an operational user.

1–8. Scope of CE
Continuous evaluation begins during the mission need determination
and concept exploration phases and continues through post deploy-
ment support to system retirement. Software CE activities are tai-
lored to the scope and cost of development or post deployment
support and to the criticality of the system’s software to its user’s
mission.

1–9. CE activities and levels of evaluation
a. Continuous evaluation activities are conducted at three levels

by—
(1) Individuals in the development organization. The goal is to

directly assess and improve quality through development activities.
The results of these evaluations are reported within these organiza-
tions to document, correct, and reexamine deficiencies. Develop-
ment organizations are those contractors or Government agencies
t a s k e d t o p e r f o r m s o f t w a r e d e v e l o p m e n t o r m a i n t e n a n c e f o r a
system.

(2) Individuals associated with the project/program/product man-
ager (PM) such as SQA, SCM, and other matrix support personnel.
The goal is to assess software and system quality, conformance to
specifications, maturity, reliability, and stability. Evaluations per-
formed within the matrix support organizations are reported to the
PM, the developer, and independent testers and evaluators.

(3) Government evaluators or assessors in accordance with AR

73–1. The goal is to formally assess software and system acceptabil-
i t y w i t h r e s p e c t t o o p e r a t i o n a l e f f e c t i v e n e s s a n d s u i t a b i l i t y f o r
deployment and use. Independent evaluators report results to the
acquisition community, such as the PM and program executive offi-
cers (PEOs), and decisionmaking bodies, such as the Major Auto-
mated Information Systems Review Council (MAISRC) or Army
Systems Acquisition Review Council (ASARC).

b . C o n t i n u o u s e v a l u a t i o n u s e s a l l a v a i l a b l e d a t a s o u r c e s a n d
relies on the sharing of that data. It is imperative that the results of
all evaluations be shared among the members of the IPT to prevent
duplication, ensure deficiencies are identified, and corrective actions
are effective. Continuous evaluation consists of activities such as—

(1) C o l l e c t i n g a n d a n a l y z i n g d a t a o n s o f t w a r e e n g i n e e r i n g
processes and procedures in order to identify those which permit
poor quality products to be developed. The faulty approaches can
then be modified or replaced. Examples of software engineering
procedures are requirements analysis, requirements walk–through
and reviews, design procedures, quality control procedures, formal
reviews and audits, and testing.

(2) Collecting and analyzing data on software products and the
results of events in order to determine the status of software/system
progress and maturity. Examples of products and events are system/
subsystem specifications, system design reviews, code inspections,
and tests. Maturity indicators include quality, reliability, stability,
and maintainability. The International Organization for Standardiza-
tion (ISO) 9000 series of standards and the Software Engineering
Institute’s capability maturity model can be useful when performing
these evaluations.

(3) Collecting and analyzing data on corrective actions to ensure
proper resolution.

c. The level of CE required for each system throughout its life
cycle is determined by its acquisition category, cost, type of dollars
expended, and oversight interest.

Section III
Software versus System Testing

1–10. General
a. Unifying the T&E process requires that the software T&E

mission include not only software, but its capability to perform
operational mission requirements as an integral part of the target
system. There are two objectives to testing: demonstration of per-
formance and assisting fault detection and removal procedures.

b. Software T&E must address system level requirements which
i n c l u d e , b u t a r e n o t l i m i t e d t o , p e r f o r m a n c e , t r a i n i n g , i n t e r -
operability and interfaces with other systems, supportability, conti-
nuity of operations, and user interfaces. These aspects of the total
system must be tested and evaluated with the software functions.
Examples of specialized system tests which are part of the software
integration process are identified in chapter 6.

c. An incremental test strategy allows a variety of test events
which are diverse enough to provide confidence in the effectiveness
of the test process. In addition, an incremental strategy provides a
means to identify and correct failures earlier and more effectively.
Figure 1–2 shows the general relationship between different levels

2 DA PAM 73–7 • 25 July 1997

of requirements and corresponding test levels. Specific test events
and levels are tailored to the needs of each acquisition.

d. Independence in testing and reporting channels promotes ob-
jectivity in test and evaluation activities. Army requirements for
independent testing are cited in AR 73–1. Independence in reporting
is discussed in chapter 4.

1–11. Test levels
a. Software tests. Lower levels of software tests performed by the

software developers are structured to verify the accuracy of algo-
rithms and computations and to make sure that the portions of coded
software work in accordance with the design, meet the expected

results, can handle erroneous inputs, and have been exercised with
combinations of differing functions. Software developers are respon-
sible for ensuring that user requirements are correctly implemented
in their designs and ensuring that when pieces of software are
integrated, they function as required.

b. Software/system tests. As the software subsystems are inte-
grated, software developers ensure that realistic stress and inter-
operability are verified in tests at systems integration. This is the
final opportunity to check software requirements prior to technical
tests run by the Government at the system level. Software tests are
n o r m a l l y c o n d u c t e d i n s o f t w a r e d e v e l o p m e n t f a c i l i t i e s a n d
laboratories.

3DA PAM 73–7 • 25 July 1997

Figure 1-2. Requirements and test level relationship

c. System technical tests. Technical system–level tests look at the
c a p a b i l i t y o f t h e s o f t w a r e t o s u p p o r t s y s t e m p e r f o r m a n c e .
Government–run technical tests, called developmental tests (DTs)
are conducted in the laboratory, Government test beds, and/or user
environments using qualified civilians or soldiers. Government de-
velopmental testing is structured to subject the system to stress
levels commensurate with those that the mature system will be
subjected to in representative operating environments. These tests
may be structured to estimate the outer limit of the system’s opera-
tional envelope, if required. Engineering requirements, performance,
and user requirements are also examined during DT.

d. Operational tests. Operational testing is system–level testing

which focuses on effectiveness, suitability, and survivability. Char-
acteristically, operational tests involve the intended user troop units
or organizations and take place in realistic operational environments.
Operational tests may be performed at any time during the life
cycle. The need for these tests is determined by the IPT and the
acquisition strategy.

Section IV
Organization and Approach

1–12. Pamphlet organization
Following this introduction, DA Pam 73–7 is arranged as follows:

4 DA PAM 73–7 • 25 July 1997

a. Chapter 2 supplies a common basis for terms used throughout
the pamphlet.

b. Chapter 3 outlines Army software test program requirements
and issues to consider when planning or evaluating a test program.

c. Chapter 4 identifies principal organizations in the software and
system acquisition process and their respective roles and responsi-
bilities in T&E.

d. Chapters 5 through 8 provide general procedures for test re-
lated or CE tasks typical to major system and software development
activities. Tasks performed by personnel in chapter 4 who are not
members of the developer’s organization are included. Each activity
is presented in the following manner:

(1) General. What the activity comprises.
(2) Objective. The primary purpose of the activity.
(3) Entry criteria. Other activities, products or events that should

have occurred prior to one or more steps in the activity under
discussion.

(4) Test activities. Representative actions relating to planning,
executing, or reporting tests that are appropriate for the development
activity.

(5) Evaluation activities. Representative actions relating to CE
that are appropriate for the development activity.

(6) Metrics. Software metrics for which data can typically be
collected or which are analyzed during the activity.

(7) Decision criteria. Summary of test or evaluation outcomes
expected to be addressed prior to the end of the activity.

e. Chapter 9 discusses unique post deployment software support
considerations relative to the activities in chapters 5 through 8.

f. Chapter 10 supplies detailed guidance on software metrics that
support the processes described in this pamphlet.

1–13. Approach
a. Military Standard 498 (MIL–STD–498), the current military

standard for software development and documentation acquisitions,
and IEEE Std P1498/EIA IS 640, its commercial equivalent, serve
as the bases for the activity descriptions. These activities, to varying
degrees, are inherent in any software–intensive system. Substituting
other commercial or industry standards for software development

documentation or other military guidance referenced in the proce-
dures of this pamphlet can be effectively accommodated and is
encouraged.

b. This pamphlet does not provide guidance on implementing
DOD acquisition reform policy and does not identify alternative
commercial substitutes for previously mandated military standards
and specifications regarding software development production and
interrelated processes. Additional sources for information in this
area include, but are not limited to, the DOD Index of Specifications
and Standards (DODISS), International Organization for Standardi-
z a t i o n (I S O) , I n t e r n a t i o n a l E l e c t r o t e c h n i c a l C o m m i s s i o n (I E C) ,
American National Standards Institute (ANSI), Institute of Electrical
and Electronic Engineers (IEEE), and Software Engineering Institute
(SEI). The guidance documents referenced in this pamphlet were in
effect at the time of publication.

c. This pamphlet does not promote any particular software or
system development strategy. It is up to the Government program
management and its developer(s) to negotiate appropriate activities,
w o r k i t e m s w i t h i n a c t i v i t i e s , d a t a p r o d u c t s , a n d s e q u e n c i n g o f
events.

d. Activities are not stand–alone entities, but interact with prod-
ucts and work performed in other activities. They may be dynamic
and iterative. Steps in one activity initiate work in other activities.
Independent management action can also initiate activities. In gener-
al, an activity is comprised of the following elements:

(1) Planning the work to be accomplished in an activity.
(2) Performing the work by executing the plan.
(3) Evaluating (or monitoring) work performed against expected

results. Based on the results, replanning often occurs and the cycle
repeats.

e. The interconnections among project activities can be viewed as
a network. A highly simplified generic integrated project network is
shown in figure 1–3. In the figure, activities A, C and E are initiated
by program management action at their designated starting times.
Evaluation steps in activity A initiate planning for B and execution
steps in activity C. Activity G follows an iteration of C.

5DA PAM 73–7 • 25 July 1997

Figure 1-3. Sample integrated project activity network

Chapter 2
Terms and Definitions

2–1. General
a. Key to implementing the software T&E process is the use of

consistent and common terminology. This chapter establishes the set
of terms used throughout DA Pam 73–7 and references similar
terms often used within the AIS and MSCR environments. Acro-
nyms and definitions for many of the terms are contained in the
Glossary.

b. Of special note is the term “ software developer.” Throughout
this pamphlet, a developer is any contractor or Government agency
that generates software products whether by means of new develop-
m e n t , m o d i f i c a t i o n , r e u s e , r e – e n g i n e e r i n g , m a i n t e n a n c e o r o t h e r
activity.

2–2. Terminology cross reference
a. Entries under the heading “ Current Term” in the following

tables describe the T&E process in this pamphlet. Other terms
shown are for reference only. Note — In this pamphlet, the term
MSCR is equivalent to the computer resources comprising weapons
systems, battlefield automated systems (BAS) or mission critical
computer resources (MCCR). AIS is equivalent to Army informa-
tion mission area (IMA) systems.

b. A common set of terms is used to provide a singular approach
to describing tests across the Army. Tables 2–1 and 2–2 list the
current terms and those which have been used in the past.

c. Organizational roles are presented in table 2–3 to show the

relationship between terms currently in use and any deviations in
terms used in this pamphlet.

d. In the past, MSCR and AIS programs chose to use a variety of
formats for their technical data. These were consolidated into a
single set under MIL–STD–498 and Institute of Electrical and Elec-
tronics Engineers Standard (IEEE STD) P1498/EIA IS 640 (com-
mercial version) for any type of software acquisition. Table 2–4
shows the consolidated documents and comparable MSCR and AIS
software documents of earlier military standards. Systems contracted
for prior to MIL–STD–498, of course, may continue to maintain
software deliverable data in their original formats. The table also
includes documents pertaining to Government DT, operational test,
and independent evaluation. Two of the documents have expanded
their software role as a result of AR 73–1. They are the users’
functional description (UFD) and metrics reports.
Note. MIL–STD–498 and IEEE Std P1498/EIA IS 640 will hereafter be
referred to as “ consolidated software standards” throughout the rest of this
pamphlet.

e. Table 2–5 is a cross reference of terms related to software
development tools and techniques.

f. The priorities and categories in tables 2–6 and 2–7 are recom-
mended in order to provide a standard means to score software
deficiencies and change requests during development and test. These
common classifications form the basis for controlling entry and exit
objectives, promoting standard interpretation of test deficiencies,
and fostering meaningful entries in the Army test incident reporting
system (ATIRS). These priorities and categories were chosen be-
cause they incorporate a user’s view of problem type and criticality;
many other classifications are possible.

6 DA PAM 73–7 • 25 July 1997

Table 2–1
Developmental test terminology cross–reference

Current term AIS term MSCR term Attributes

Government developmental
test (DT) 1

Software qualification test
(SQT)

DT, comparison test (CPT),
first–article test (FAT),
preproduction qualification
test (PPQT), technical fea-
sibility testing (TFT) 2

Formal test(s) requiring independent testers, independent
evaluators/assessors.
Requires complete design limit tests (stress volume).
Required throughout life cycle.
Independent evaluation/assessment after MS III (only if
new or unresolved issues).

System qualification test Software development test
(SDT) cycle/system test

System integration test
(SIT)

Formal test(s) witnessed by Government for system ac-
ceptance.
Test plans, procedures, conditions prepared by
developers.
Levels of test, documentation defined by statement of work
(SOW).
Software metrics collected.

Computer software configu-
ration item (CSCI) qualifica-
tion test

SDT cycle/system test CSCI formal qualification
test (FQT)

Formal test(s) witnessed by Government for software ac-
ceptance.
Test plans, procedures, conditions prepared by
developers.
Levels of test, documentation defined by SOW.
Software metrics collected.

CSCI/hardware configura-
tion item (HWCI) integration
test

SDT cycle/system testing 3 System integration testing 3 Informal tests controlled and performed by software and
system developer.
Tests and environment documented in software develop-
ment files (SDF)s.
Includes demonstrations or limited functional capability for
users to interact with during design or development.

Unit integration test SDT module/program test-
ing

Computer software compo-
nent (CSC) integration test

Same attributes as CSCI/HWCI integration test.

Unit tests SDT unit tests Computer software unit
(CSU) tests

Same attributes as CSCI/HWCI integration test.

Experimental Prototyping Prototyping/emulation/
brassboard

Informal tests controlled and performed by developer typi-
cally to demonstrate limited functional capability for user
feedback during development.

Notes:
1 See AR 73–1 for test types.
2 Comparison test (CPT), first–article test (FAT), preproduction qualification test (PPQT), technical feasibility test (TFT).
3 Prior to formal qualification test.

Table 2–2
Operational test terminology cross–reference

Current term AIS term MSCR term Attributes

Initial operational test
(IOT) 1

Software acceptance test
(SAT) 1

IOT, Joint test (JT), multi-
–Service operational test
(MOT), operational testing
(OT) 2

Required for MS III.
Independent testers, independent evaluators/assessors.
Class VI AIS systems require IOT/follow–on operational
test (FOT), but tester performs evaluation/assessment.

Follow–on operational test
(FOT)

SAT 1 FOT, on–site user test
(OSUT) 3

Independent testers, independent evaluators/assessors
only if unanswered issues, new issues, fixes from IOT.
All systems with upgrades, fixes, enhancements after MS
III.

Supplemental site test
(SST)

SST None Supplements AIS IOT or user acceptance test (UAT) to ex-
ercise all configurations used operationally.

Early user test (EUT), early
user experiment (EUE)

Beta or prototype testing
(informal)

Early user test and experi-
mentation (EUTE)

To answer issues prior to MS II or identify system solutions
and/or define issues at MS II or beyond.

Force development test
(FDT), force development
experiment (FDE)

Beta or prototype testing
(informal)

Force development test
and experimentation
(FDTE)

Conducted with users under field conditions.
Supports acquisition and development of requirements,
doctrine, training.

Limited user test (LUT) None None Generally single issue user test between MS II and MS III.
User acceptance test
(UAT) 1

None None Post MS III AIS user test when full FOT not needed.

Emergency fixes Lead site verification test Tests for emergency fixes

Notes:
1 With SST, if necessary.
2 Joint test (JT), multi–Service operational test (MOT), operational test (OT).
3 On–site user test (OSUT).
4 All tests are formal unless otherwise noted.

7DA PAM 73–7 • 25 July 1997

Table 2–3
Organizational roles cross–reference

Current term AIS term MSCR term

Acquirer User Group Contracting Agency
Approval Authority Approval Authority Program Decision Authority
Central Design Activity (CDA) AIS (no change
to MSCR terms)

Software Development Center (SDC) Life Cycle Software Engineering Center (LCSEC)/
Software Support Activity (SSA)

Computer Resources Integrated Product Team
(IPT)

Computer Resources Working Group (CRWG) CRWG

Continuous Evaluation Quality Assurance/IV&V Developmental Evaluators: IV&V/SQA/LCSEC
Developer Application System Developer/Development

Group
Developing Agency/Contractor/Software Engi-
neers

Developmental Tester Independent Third Party Tester Developmental Tester
IV&V/LCSEC/SQA

FP/CBTDEV or
User Representative

Functional Proponent (FP) Combat Developer (CBTDEV)

Independent Developmental Evaluator/Asses-
sor

Independent Evaluator Developmental Evaluator/Assessor

Independent Evaluator Independent Evaluator Operational Evaluator
Materiel Developer (MATDEV) Assigned Responsible Agency Materiel Developer
— Major Automated Information System Review

Council (MAISRC)
Army Systems Acquisition Review Council
(ASARC)

-- Non-Automated Data Processing (ADP) Oper-
ator, Organization

User/Troops/Unit

Operational Tester Independent Third Party Tester Operational Tester
Project/Program/Product Manager (PM) Project Officer/Operations Manager/Program

Manager/Product Manager/Project Manager
Program Manager/Product Manager/System Man-
ager

Software or Developer’s Testers Software Testers Software Engineering Testers
Software or Developer’s Tester Tester Developmental Tester
Software Quality Assurance (SQA) Organiza-
tion

Automation Quality Organization Assurance (SQA)

T&E Team/T&E Community Matrix Support and Testers Matrix Support, PDSS Personnel, Testers, and In-
dependent Evaluators/Assessors

Test IPT Test Integration Working Group (TIWG) TIWG
User Representative Proponent Agency (PA) Similar to CBTDEV/FP

Notes:
-- AIS/MSCR term still applies.

Table 2–4
Documentation cross-reference

Current term AIS term MSCR term

Computer Operation Manual (COM) 1 Computer System Operator’s Manual (CSOM) 3

Computer Programming Manual (CPM) 1 Software Programmer’s Manual (SPM) 3

Computer Resources Life Cycle Management
Plan (CRLCMP)

Management Plan (software level), System
Decision Paper

Computer Resources Management Plan (CRMP)

Database Design Description (DBDD) 1 Database Specification (DS) 2

Event Design Plan (EDP) (operational) SAT Test Plan Test Design Plan (TDP) (operational)
Firmware Support Manual (FSM) 1 Firmware Support Manual (FSM) 3

Interface Design Description (IDD) 1 Software Unit Specification (US), interface de-
sign info 2

Interface Design Document (IDD) 3

Interface Requirements Specification (IRS) 1 Software Unit Specification (US), interface req’t
info 2

Interface Requirements Specification (IRS) 3

Metrics Reports Metrics Charts
-- Management Plan Program Management Plan
-- Software Change Package (SCP) Engineering Change Proposal - Software
-- Technical Test Plan (formerly SQT, PT) Detailed Test Plan (DTP)
-- Implementation Procedures (IP) 2 Life Cycle Software Support Environment User’s

Guide
-- Problem Reports (PR) Software Trouble Report (STR)/Software Problem

Change Report (SPCR) or Test Incident Reports
(TIRs)

-- Maintenance Manual (MM) and Implementa-
tion Proc. (IP)

Software Support Transition Plan

-- Developmental Software Support Environment
-- Documentation of Commercially Available/

Privately Developed Software
-- Engineering Change Proposal - Software

(ECP-S)
Software Change Notice, Engineering Change
Proposal (ECP)

Operational Concept Description (OCD) 1 Functional Description (FD), section 2 2 System/Segment Design Document (SSDD), sec-
tion 3 3

8 DA PAM 73–7 • 25 July 1997

Table 2–4
Documentation cross-reference—Continued

Current term AIS term MSCR term

Software Design Description (SDD) 1 Software Unit Specification (US), design info 2

Maintenance Manual (MM), “ as-built” design
info 2

Software Design Document (SDD) 3

Software Development Plan (SDP) 1 Functional Description (FD), section 7 2 Software Development Plan (SDP) 3

Software Input/Output Manual (SIOM) 1 User Manual (UM) 2

Software Installation Plan (SIP) 1 Implementation Procedures (IP) 2

Software Problem/Change Report (PCR) Problem Report, Trouble Report Software Trouble Report (STR), Problem Report
Software Product Specification (SPS) 1 Maintenance Manual (MM), maintenance pro-

cedures 2
Software Product Specifications (SPS); 3

Computer Resources Integrated Support Docu-
ment (CRISD), modification procedures 3

Software Requirements Specification (SRS) 1 Software Unit Specification (US), req’t info 2 Software Requirements Specification (SRS) 3

Software Test Description (STD) 1 Test Plan (PT), detailed info 2 Software Test Description (STD) 3

Software Test Plan (STP) 1 Test Plan (PT), high level info 2 Software Test Plan (STP) 3

Software Test Report (STR) 1 Test Analysis Report (RT) 2 Software Test Report (STR) 3

Software Transition Plan (STrP) 1 Maintenance Manual (MM), planning info 2 Support Document (CRISD), planning info 3

Software User Manual (SUM) 1 End User Manual (EM) 2 Software User’s Manual (SUM); 3

Training Manuals (for CBTDEV)
Software Version Description (SVD) 1 Version Description Document (VDD) 3

Software Quality Program Plan (SQPP) Automation Quality Plan (AQP) Software Quality Program Plan (SQPP)
System Evaluation Plan (SEP) (operational) Independent Evaluation Plan (operational) Test and Evaluation Plan (TEP) (operational)
System/Subsystem Design Description
(SSDD) 1

System/Subsystem Specification (SS), system
design info 2

System/Segment Design Document (SSDD) 3

System/Subsystem Specification (SSS) 1 System/Subsystem Specification and Func-
tional Description, system req’t info 2

System/Segment Specification 3

Users’ Functional Description (UFD) and Func-
tional Description (FD)

Functional Description (FD) 2

Notes:
-- AIS/MSCR term still applies.
1 Document from MIL-STD-498/IEEE std P1498/EIA IS 640.
2 Document from DOD-STD-7935A.
3 Document from DOD-STD-2167A.

Table 2–5
Tools and techniques cross-reference

Current term AIS term MSCR term

Development Tools Development Tools, Toolbox Development Tools, Toolbox
Instrumentation, (Drivers, Emulators,
Stimulators) Performance Monitors

Performance Monitors Drivers, Emulators, Stimulators

Recovery/Reconfiguration Testing Checkpoint/Recovery Testing Recovery/Reconfiguration Testing
Software Development File (SDF) Program Folder Software Development Folder
Software Development Library Development Library (DEVLIB) Software Development Library
Software Engineering Environment Developer’s Environment Host Environment (Software Engineering

Environment)
Software Reliability Reliability Software Reliability

Table 2–6
Software problem/change priorities

Current term Applies if problem could— AIS term MSCR term

Priority 1 a. Prevent the accomplishment of an essential capability. Emergency Priority 1
b. Jeopardize safety, security, or other requirement
designated “ critical.”

Priority 2 a. Adversely affect the accomplishment of an operational-
or mission-essential capability, and no work-around
solution is known.

Urgent Priority 2

b. Adversely affect technical, cost, or schedule risks to
the project or to life-cycle support of the system, and no
work-around solution is known.

Priority 3 a. Adversely affect the accomplishment of an operational-
or mission-essential capability, but a work-around
solution is known.

Urgent Priority 3

b. Adversely affect technical, cost, or schedule risks to
the system or to life cycle support of the system, but a
work-around solution is known.

9DA PAM 73–7 • 25 July 1997

Table 2–6
Software problem/change priorities—Continued

Current term Applies if problem could— AIS term MSCR term

Priority 4 a. Result in user/operator inconvenience or annoyance
but does not affect a required operational- or mission-es-
sential capability.

Routine Priority 4

b. Result in inconvenience or annoyance for development
or support personnel but does not prevent the
accomplishment of those responsibilities.

Priority 5 Any other effect. Routine Priority 5

Table 2–7
Software problem/change categories

Current term Product affected AIS term MSCR term

Code The software code Technical Software
Database/data file A database or data file Technical Software
Design The design of the system or software Technical or functional Design
Manuals The user, operator, or maintenance manuals Documentation Documentation
Operational concept The operational concept Documentation Documentation
Requirements The system or software requirements Documentation Documentation
Test information Test plans, test descriptions, or test reports Documentation Documentation
Plans One of the plans developed for the project Documentation Documentation
Other Other software products

Chapter 3
T&E as Part of Acquisition and Development

Section I
Basis

3–1. General
a. The procedures in this pamphlet present an iterative, struc-

tured, and comprehensive approach to software test and evaluation
throughout a system’s life cycle. Specific application of these proce-
dures should be tailored to the technical and management character-
istics of each system acquisition program.

b. Selection and tailoring of software T&E procedures are prima-
rily determined by the level of technical risk which can be allowed
in the system acquisition. Other significant program factors, such as
urgency to field, may also contribute to tailoring decisions.

c. This chapter discusses general strategies to consider in provid-
ing T&E which is responsive to program needs and user require-
ments and results in fielding quality systems.

3–2. Software T&E program requirements
According to AR 73–1 and AR 380–19—

a. Software T&E must be accomplished within the context of the
overall system development and test program. It supports the con-
cept of TQM for the system development. In accordance with the
TQM concept, all persons involved in the software development
process are responsible for impacting the quality of the software
product. The following general guidelines constitute the minimum
requirements for a software T&E program.

b. A software T&E program must reflect a systematic and meas-
urable process in which continuous software evaluations present a
realistic and iterative status report. Clearly defined risk assessment
criteria for each life-cycle phase, metrics, and CE are the basis for a
logical progression of software T&E. This progression is based on
demonstrating achievement of objectives at each step.

c. Software must be assessed for its ability to support system
effectiveness and suitability. Software T&E must reduce risk to an
acceptable level that ensures system requirements and mission ob-
jectives will not be impaired by deficiencies attributable to software.
The user is the ultimate arbitrator of system requirements and mis-
sion objectives and must be involved with the T&E program.

d. Software T&E must provide data to support qualitative and
quantitative software metrics. These metrics serve as measures and
indicators of the critical technical and operational characteristics that
both the software and the integrated system need to achieve.

e. A software T&E program must support the IPT approach by
effectively sharing T&E results among participating organizations
across all life-cycle phases. Each element of the software T&E
program must provide data to support software and system acquisi-
tion decisions.

f. Software T&E must support the acquisition management proc-
ess. Individual programs and acquisition strategies determine the
scope of a software T&E program.

g. All AIS and MSCR systems which contain classified or sensi-
tive unclassified information must incorporate safeguards to protect
against compromise, subversion, or unauthorized manipulation. For-
mal accreditation by a designated accreditation authority (DAA) is
required prior to fielding. Certification, a technical evaluation of
security functions that support the mode of operation and security
policy for a system, supports accreditation.

h. Use of modeling or simulation in T&E to enhance evaluations
and reduce costs is encouraged. However, modeling and simulation
may only supplement tests, not replace them.

Section II
Test Program Considerations

3–3. The acquisition strategy
a. For any system, software testers and evaluators need to ap-

proach and plan their strategies based on fundamental acquisition
characteristics. These include but are not limited to—

(1) The acquisition category.
(2) System development approach.
(3) Software development approach.
(4) The system’s complexity.
(5) Deployment philosophy.
(6) Other participating organizations.
b. Factors such as acquisition category and DOD oversight inter-

est determine system-level reporting and approval requirements, and
the requirement for independent evaluation.

c. Table 3–1 contains several examples of alternative acquisition
program strategies. A system and its software need not share the
same strategy or the same degree of iteration in the case of multiple

10 DA PAM 73–7 • 25 July 1997

build/block implementations. It is beyond the scope of this pamphlet
to offer guidance in determining an appropriate system or software
development strategy; the consolidated software standards identified
in paragraph 2–2 d offer guidance in this area. The selected strategy
does, however, significantly affect what technical information is
available at what time, and the degree of risk that can be detected or
corrected at any point.

d . T h e s y s t e m a n d s o f t w a r e a c t i v i t i e s o u t l i n e d i n c h a p t e r s 5
through 9 of this pamphlet, taken in aggregate and performed end-
to-end, approximate a grand design program strategy. Tailoring to
combine activities when feasible, eliminate those not needed, or
reflect the needs of particular programs is left to the discretion of
the appropriate functional area authority. Examples of tailoring in-
clude combined computer software configuration item (CSCI)/sys-
tem qualification tests, combined or concurrent DT/OT events, and
use of nondevelopment items (NDIs). The accelerated software de-
velopment process (ASDP) approach for AIS is a variant of the
incremental strategy (see DA Pam 73–1 and 73–5).

e. Highly complex or wide-area systems may require extensive
i n s t r u m e n t a t i o n a n d d a t a r e d u c t i o n c a p a b i l i t y d u r i n g l a r g e s c a l e
Government tests, which must be adequately planned and scheduled.

f. Deployment philosophy considerations could be site specific
operational requirements that necessitate multiple field tests.

g. The most efficient and effective use of resources is to coordi-
nate activities among the members of the IPT.

3–4. The type of system
a. MSCR refers to computer resources acquired as integral ele-

ments of systems used by military personnel to carry out combat
missions. They can be physical components of weapons systems, or
computer resources essential to a weapons system’s operation and
maintenance in the field. The term also applies to ancillary com-
puter resources (hardware, software, documentation, data, and so
forth) associated with testing and maintaining the MSCR, such as—

(1) Training devices.
(2) Automatic test equipment.
(3) Land-based test sites.
(4) System integration and test environments.
b. Software T&E of MSCR should address unique characteristics

such as real-time processing constraints, security safeguards, fault
tolerance, human health and safety concerns, and adverse operating
environments.

c. Automated information systems encompass the functions, re-
sources, equipment, software and activities associated with one or
more of the disciplines of automation, telecommunications, visual

information, publications and printing, and records management.
They are most often sustaining base systems.

3–5. Target environment and intended end use
a. Single-site systems are those that reside in only one location.

Special T&E considerations include arranging for concurrent live
operation during testing periods and using realistic testing methods.
An example of a single-site system is an Army wholesale logistics
system which resides on a large mainframe at one location. Test
designs for single-site systems should account for—

(1) Loading and running the system in specialized test regions
which are partitioned from production regions.

(2) Running the volumes and stress loading necessary to simulate
or stimulate expected interactions with users, other systems or the
external environment. This may require the use of models.

(3) Ensuring that all processing and reporting cycles are exe-
cuted, whether by models or actual testing, including end-of-year
and other cycle roll-ups.

b. Single-user systems are designed to be employed by one user
organization. This arrangement allows direct and consistent user
involvement throughout development and T&E. It is essential that
operational users be part of T&E planning to ensure that specialized
operations are not overlooked. Involving users is equally important
for all other system types as well.

c. Sustaining base information systems provide the capability to
raise, organize, train, equip, deploy, and sustain Army forces. They
usually do not physically move to the battlefield during mobilization
or wartime. These systems are typically found at centrally located
sites. Test designs for these systems should account for—

(1) Performing different missions during peacetime, mobilization,
wartime, and demobilization operating conditions.

(2) D e m o n s t r a t i n g a b i l i t y f o r i m m e d i a t e r e a d i n e s s w h e n
necessary.

(3) Demonstrating ability to transition smoothly and rapidly from
one operating condition to another.

d. Strategic information systems are typically those which facili-
tate command and control of Army forces and resources, including
planning, directing, controlling, reporting, and communications. Test
designs for these large scale systems should account for the same
considerations as sustaining base systems with the added emphasis
on fail-safe operations and information security. Strategic informa-
tion systems are most often managed under DOD and Joint Chiefs
of Staff (JCS) publications and AR 525-1; however, some may be
developed under AR 25-3 policies. An example of a strategic sys-
tem is the Global Command and Control System (GCCS).

Table 3–1
Examples of program strategies

Program strategy Define all first Multiple development Field interim system/
requirements first? cycles? software?

Grand Design (Once-Through) — Determine user needs, define requirements,
design the system, implement the system, test, fix and deliver.

Yes No No

Incremental (Preplanned Product Improvement) — Determine user needs, de-
fine requirements, plan sequence of builds to implement a subset of total re-
quirements in each. Perform design through test/fix/delivery per build, succes-
sively adding capability.

Yes Yes Maybe

Evolutionary — Determine a set of user needs; final determination is unknown.
Perform requirements definition through delivery. Refine user needs and sys-
tem requirements and repeat for successive builds.

No Yes Yes

Other — Variations of the above or alternate approaches.

e. Theater and tactical systems operate in a defined area of the
operational theater and focus on combat and wartime missions. Test
designs should address additional considerations related to operating

in adverse operating environments, real-time processing constraints
and tactical communications.

3–6. The software development strategy
The software development strategy is an element of the system

11DA PAM 73–7 • 25 July 1997

a c q u i s i t i o n s t r a t e g y . C o m p u t e r r e s o u r c e i t e m s m a y b e n e w l y
developed or reused, in whole or in part, from other development
sources. The type and degree of testing needed to verify correct,
reliable operation can vary for each type.

a. Newly developed software. Software built for the first time
needs verification and testing that all functional and performance
and design requirements allocated to it behave as specified and
expected, including the interfaces to other software, hardware and
human operators. The majority of procedures and activities de-
scribed in this pamphlet pertain to newly developed software.

b. Nondevelopment items. The T&E community needs to care-
fully review and understand plans which incorporate NDI in the
acquisition strategy. Documentation, evidence of testing, extent of
s o f t w a r e m o d i f i c a t i o n s a n d e v e n t u a l s o f t w a r e s u p p o r t a b i l i t y a r e
areas which impact T&E.

(1) T h e N D I a p p r o a c h u s e s p r o d u c t s t h a t h a v e a l r e a d y b e e n
developed for another purpose or another user. An NDI component
is chosen because it should be capable of meeting a set of system
requirements. The NDI systems can be the means to field a system
faster and cheaper with little or no new development effort. For
many systems, computer hardware is NDI.

(2) Software frequently fits in the NDI category because it may
be off-the-shelf. However, software in NDI systems may not always
be entirely off-the-shelf but is often a combination of off-the-shelf
and newly developed software. NDI software which requires modifi-
cation or system integration must undergo software T&E.

(3) NDI software may or may not require Government develop-
mental testing. With rare exceptions, operational testing must be
conducted to ensure that the NDI software can support the overall
mission.

(4) NDI executive software is validated during operational testing
using a representative functional application. Normally, executive
software cannot be released or used with an application until it has
successfully completed an operational test. (Executive software in-
cludes compilers, utilities, operating systems, special customized
system software, and so forth.)

(5) Unique NDI T&E considerations are—
(a) Developer’s enhancements or adaptations to NDI software

should perform correctly and not introduce new defects.
(b) Developer provided documentation should be adequate to per-

mit suitable operation and maintenance of NDI software in its in-
tended user and maintenance environment.

(c) In order to use previous test results of NDI in lieu of Govern-
ment (re)testing, the conditions under which the NDI was tested
must be sufficiently similar to the conditions under which the NDI
will be used by the Army.

(d) When integrating multiple NDI components, T&E must dem-
onstrate that system performance characteristics are met.

c. Reusable software. Software which is developed for the pur-
pose of being reused in other applications with little or no further
modification can be more costly and time consuming to produce and
verify than components built without reuse in mind. Determining
and documenting the scope and potential interfaces of reusable
items, such as requirements, design or code, is a more rigorous and
formal process. Consequently, so is the test strategy to verify the
items the first time. However, incorporating well engineered reusa-
ble components in succeeding applications should reduce overall
integration and test effort and time.

3–7. Prototypes
a. Prototypes are working models suitable for evaluating system

design, performance, or production potential. Software prototypes
are normally development tools, not a testing technique or a sub-
stitute for system development, testing, and configuration manage-
ment. A prototype often concentrates on a specific subset of the
total user requirements.

b. Informal releases of prototypes are encouraged for demonstra-
tions to users and early looks at the user interface designs and to
assist in refining requirements earlier in the development process.

Using prototypes can also reveal difficulties or constraints in imple-
mentation that normally would not become evident until later in the
process. Deficiencies can be handled with less impact to the total
program when detected early.

c. In the event that long-term operational use of prototype soft-
ware is planned, the prototype material must be properly tested,
documented and accepted into the approved software baseline in the
same manner as other software comprising the system.

3–8. Security certification
a. The software test program must accommodate the require-

ments of AR 380-19 regarding information security.
b. Examining the control of the procedures used during design

and test to develop software is an integral part of the software
certification and system accreditation process. AR 380-19 states—

(1) S o f t w a r e m u s t b e c o m p l e t e l y t e s t e d b e f o r e b e c o m i n g
operational.

(2) Both valid and invalid data must be used for testing.
(3) Testing is not complete until all security mechanisms have

been examined and expected results attained.
(4) Upon completion of maintenance or modification of software,

i n d e p e n d e n t t e s t i n g a n d v e r i f i c a t i o n o f t h e c h a n g e s i s r e q u i r e d
before returning the software to operation.

3–9. Metrics and T&E
a. Metrics are technical and management tools that can highlight

potential problems or deficiencies in the software development proc-
ess or its products. They provide quantitative and qualitative meas-
ures which help focus management attention and, if appropriate,
resources on the prevention or correction of problems.

b. Metrics are an integral aspect of controlling and reporting
software T&E activities and are required for Army software devel-
opments. Metrics measure and provide feedback, affecting both the
product and process, enabling managers to continuously improve the
process.

c. Metrics may be developed, collected, and used by many organ-
izations (developers, evaluators, LCSEC, software engineers, testers,
SQA, IV&V, and so forth). Metrics are reported to evaluators, PMs,
PEOs, and review council decision authorities.

d. Chapter 10 details the characteristics and use of each of the
metrics referenced throughout this pamphlet. Many of the metrics
provide insight into the software’s readiness for test and the prog-
ress of testing that has occurred.

3–10. Disciplines essential to effective T&E
Several key disciplines are essential to ensuring the right software
products and systems are built, verified, and fielded. They are con-
figuration management (CM), quality assurance (QA) and a closed-
loop corrective action system. In brief, CM ensures only authorized
changes are made to baselined products under controlled circum-
stances. QA monitors and evaluates the development process and
resulting products for adherence to approved development proce-
dures and the work statement. The corrective action system assures
that detected problems are properly recorded and resolved.

Section III
Software T&E Methods

3–11. Tools and related techniques
a. This section briefly describes a variety of testing methods

which can be used to detect errors, to develop sets of test data, and
to monitor computer system resources. The list is not all inclusive
but representative. The overall software T&E program should incor-
porate a number of complementary techniques. Automated assist-
a n c e i s a v a i l a b l e t o s u p p o r t m a n y o f t h e s e m e t h o d s , s u c h a s
computer aided software engineering (CASE) tools. The generic
term ’program’ is used to represent the software entity under test. A
method may be applicable to one or more types of software entities,
such as a unit or CSC, or a physical subset of an entity, such as a
procedure or file.

b. Figure 3–1, which follows the last method described, identifies

12 DA PAM 73–7 • 25 July 1997

software system development activities in which each T&E method
is typically employed. A method may be useful in other activities as
w e l l , b a s e d o n a v a i l a b i l i t y o f a u t o m a t e d s u p p o r t , a v a i l a b l e r e -
sources, or other relevant factors.

3–12. Static analysis techniques
Static analysis involves examining or analyzing a software product
rather than executing code in order to find errors.

a. Reviews, walk-through and code inspections. These techniques
apply the principle of visual inspection of portions of technical
documentation to detect errors. The procedure typically involves a
small working group of technical personnel who use requirements
documents, specifications, program listings and standards as the
basis for performing line-by-line code reading, doing walk-throughs
of test inputs, tracing requirements from document to document or
performing attribute checklist inspections. The clean room software
engineering approach, for example, makes heavy use of static verifi-
cation techniques and formal specification methods, to the extent
that unit testing is no longer necessary and code is first tested at a
system level.

b. Code auditors. A code auditor is a software program that
examines the source code of other programs to determine whether
p r e s c r i b e d p r o g r a m m i n g s t a n d a r d s a n d p r a c t i c e s h a v e b e e n
followed.

c. Interface checking. The flow of information and control within
a system are areas where mistakes can occur, for example, by
calling the wrong procedure or passing the incorrect data. Interface
checkers are automated tools which can analyze a requirements
specification, design specification, or code to detect errors in infor-
m a t i o n o r c o n t r o l p a s s e d b e t w e e n s o f t w a r e c o m p o n e n t s a n d
modules.

d. Physical units checking. Physical unit checking involves using
an automated tool to specify and check measurement units in com-
p u t a t i o n s . F o r e x a m p l e , c o m p u t a t i o n s i n v o l v i n g d i f f e r e n t u n i t s
which are not meaningful would be detected, such as adding feet
and seconds. Strongly typed programming languages, such as Ada,
provide this type of check when programs are compiled.

e. Data flow analysis. This automated technique detects whether
or not sequential series of events occur in software execution.

f. Structure analyzers. Automated structure analyzers detect vio-
lations of control flow standards, such as improper calls to routines,
infinite loops and incidents of recursion in source code or design
language statements. Analyses may be reported in tabular or graphi-
cal form.

g. Cross reference programs. Cross-reference programs produce
lists of data names and statement labels showing all places they are
used in a program. Compilers may include cross reference genera-
tion options. These programs are useful for programming languages
without structured programming syntax, such as early versions of
FORTRAN or BASIC.

h . I n p u t s p a c e p a r t i t i o n i n g t e c h n i q u e s . P a r t i t i o n i n g t e c h n i q u e s
emphasize the use of path analysis, domains, or partitions to build
sets of test data. Path analysis generates a set of test data which will
cause a selected path in software to be executed. Domain testing
detects errors in software control flow which occur when an input
follows the wrong path. Partition analysis detects missing path er-
rors, incorrect operators, domain errors, and computation errors as
well as generating a test data set that is sensitive to domain and
computational errors.

i . C o m p l e x i t y a n a l y s i s . T h i s t e c h n i q u e e x a m i n e s c o d e d a l g o -
rithms or programs to determine whether improvements in areas of
correctness, number of operations required, amount of space used or
code straightforwardness are possible. Chapter 10 describes several
methods of complexity analysis.

3–13. Dynamic analysis techniques
a. Assertion testing. This technique requires the use of an asser-

tion preprocessing tool, which generates executable assertion code
embedded with the source code. Assertions are statements which

specify the intent of input, output, intermediate steps of functions,
and constraints.

b. Cause-effect graphing. This technique applies to test case de-
sign. It is used to systematically select a set of test cases (data)
which have a high probability of detecting errors that exist in a
program. The technique examines the inputs and combinations of
inputs to a program and identifies the expected outputs. These in-
puts and outputs are derived through analysis of requirements speci-
fications instead of code, providing an independent check of the
code’s implementation of the requirements.

c. Performance measurement techniques. These techniques in-
clude execution time and resource analysis. This involves monitor-
ing software execution to locate code or throughput inefficiencies
either by random sampling or by means of software probes. Moni-
tored items may include number of central processing unit (CPU)
cycles for groups of instructions, waiting times, control passing
from one software component to another, memory paging times, and
amount of memory or secondary storage space used.

d. Path and structural analysis. These tools monitor the number
of times a specific portion of code is executed, the amounts of time
involved, and other data. Portions of code are classified into three
levels for the structural analysis: statements, branches and paths.
Statement analysis is the least rigorous while path analysis is the
most rigorous method. Generally, some form of structural analysis is
instrumented as part of other dynamic analysis testing. Structural
analysis can be effective for detecting computation, logic, data han-
dling and output errors.

e. Interactive debugging techniques. Interactive testing aids are
tools used to control and analyze a program while it is executing.
The programmer can suspend program execution at any point to
examine program status, view the values of selected variables and
memory locations, modify the state of the executing program and
trace the control flow of the executing program.

f. Random testing. This technique produces random samples of
input data, executes the computer program using this data, then
compares the generated output to the expected output. Knowledge
of the actual input distribution may or may not be considered in the
input generation process. One advantage of random testing is the
exposure of the program to sequences and combinations of inputs
which would not be expected to happen. These combinations frequ-
ently are among the first combinations of inputs experienced in the
operational environment. This method cannot test all possible com-
binations of inputs and should not be the primary approach in the
overall test strategy. It can be useful, however, in discovering unex-
pected program behavior.

g. Functional testing. This is the most commonly used testing
approach. The objective is to test the software functions by execut-
ing the program with specific controlled input, thereby verifying the
functions performed by that program. Errors which prevent the pro-
gram from operating correctly can be detected through functional
testing; however, use of this method alone does not guarantee a
thorough test of the code nor an absence of errors.

h. Mutation analysis. This technique detects errors in a program
and determines how well the program has been tested. It entails
studying the behavior of a large collection of different versions of
the same program, called derivatives, which have been systemati-
cally derived from the original program. The method involves intro-
ducing a small number of errors into a program at a time, and
repeating this many times. If the data used to test the program and
its mutant derivatives is complete, each mutant should produce a
different output data set given the same input data set. If this occurs,
the program under test is assumed to be correct within the limits of
the assumption, and the test data set is assumed to be complete.
Mutation analysis requires automated tools to produce realistic mu-
tations and to examine the behavior of the programs under test. An
expert human analyst should also scrutinize the derivatives. Large
programs can require an enormous number of mutations to produce
effective results. Mutation analysis is used at the point where a
source program exists with a set of test data upon which the pro-
gram is known to operate correctly.

13DA PAM 73–7 • 25 July 1997

i. Error seeding. Error seeding is a statistical approach to evalu-
ating the comparative quantity of errors remaining in large software
systems by estimating the effectiveness of testing. The technique is
to introduce errors into the code, perform the test, then analyze the
output to determine the percentage of the known errors which were
detected. This percentage is then applied to overall error detection
results to estimate the number of unknown errors which were not
detected. Characteristics of seeded errors that escaped detection are
analyzed and new test cases devised to check for those errors. Error
seeding is particularly applicable to critical software where errors
occurring in the end use environment would be intolerable.

j. Real-time testing. Real-time testing simulates the operational
system environment. Generally, this technique is of value in produc-
ing stress and volume loads, creating test conditions which are
difficult to produce in a controlled setting, and for situations where
tests in the operational environment are not possible for reasons
such as safety and prohibitive cost.

(1) Modeling, simulation and stimulation.
(a) Modeling typically refers to using mathematical representa-

tions to mimic behavior or characteristics of the external environ-
ment. In simulation, selected features of the behavior of one system
(the target system) are represented by the behavior of another sys-
tem (an abstract depiction of the target system) through the use of
software. Stimulation requires using one or more devices to recreate
the actions or stimuli needed to make the system under test react as
if receiving actual data in its deployed environment. Models are
often used in simulation and stimulation programs. Stimulation de-
vices for AIS are typically called remote terminal emulators.

(b) Significant technical risk can be mitigated by early use of
m o d e l i n g a n d s i m u l a t i o n i n s o f t w a r e T & E . T h i s r i s k r e d u c t i o n
depends highly on the validity of the model as compared to the
actual system. When models or simulations will be used as a sub-
stantial basis for formal acquisition milestone decisions, they must

first be accredited and validated by an activity independent of the
model developer (see AR 5-11).

(c) Modeling and simulation can also be employed to explore the
sensitivity of test results to conditions other than those experienced
in testing. This use of modeling and simulation is not, however, a
category of real-time testing as described above. See DA Pam 73-8
for this type of information.

(2) Test beds. A test bed refers to a specific environment estab-
lished for the purpose of testing project software. It may range from
a set of programs used with a static analysis test tool to a fully
operational suite of target hardware surrounded by simulation and
stimulation devices. Test bed is synonymous with the consolidated
software standards’ software test environment.

3–14. Symbolic testing
This method, also called symbolic execution, is applied to paths
through programs. Input values are symbols that stand for sets of
values rather than actual values. The symbolic execution is a sub-
stitution of symbolic values of variables in expressions for the
variables themselves. This technique can be used to generate expres-
sions which describe the cumulative effect of the computations
which occur in a program path. Symbolic execution is used as a
basis for data flow analysis and proof of correctness of computa-
tions. It is primarily useful for languages that are algebraic such as
FORTRAN. Other languages, such as COBOL, are constructed in a
manner which makes it difficult to generate symbolic input.

3–15. Formal analysis
This method involves a formal mathematical proof that given a
specific input and programming language rules, the desired output
will be obtained. It relies on mathematical assertions regarding the
intent of the specification.

14 DA PAM 73–7 • 25 July 1997

Figure 3-1. T&E methods and development activities

Chapter 4
Building the Software T&E Team

4–1. General
This chapter discusses the PM’s T&E team. The acquisition plan-
ning performed by the PM requires input from software T&E organ-
izations to ensure that a viable T&E program is established and
maintained.

4–2. Objective
Early meetings with the PM, PEO, materiel developers (or contrac-
tors, if applicable), and the other members of the T&E team are
paramount to achieving a comprehensive and integrated test pro-
gram. These meetings address the operational and Government de-
v e l o p m e n t a l t e s t c o n c e p t s . I s s u e s d i s c u s s e d a r e : d e v e l o p m e n t
strategy, configuration management, test bed design, facilities, in-
strumentation, test files, simulations, models, proposed test dates,
test players, and the overall T&E concept.

4–3. Organizations and responsibilities
a. The specific organizations responsible for T&E activities are

identified by the PM for each acquisition program. Many of the
organizations must be involved during mission need determination
in order to provide early planning, assessment, and structure to the
system/software development and T&E.

b. Software T&E personnel are part of the PM’s system acquisi-
tion team to provide technically knowledgeable support in the areas
of software design, performance, and capabilities. Their purpose is
to enhance and improve the exchange of information, prevent dupli-
cation of testing and data collection, and provide the PM with
information to make decisions.

c. Table 4–1 identifies general categories of T&E team players,
summarizes their responsibilities, and provides examples of specific
Army organizations in each category. Membership and level of
participation of team members varies based on a program’s acquisi-
t i o n c a t e g o r y a n d s t r a t e g y , D O D o v e r s i g h t i n t e r e s t , a n d o t h e r
factors.

4–4. Software T&E team members
a. These organizations are identified and assigned early so that

software T&E planning is integrated into the project as part of the
PM’s total program and acquisition team. This enables software
T&E personnel to determine the extent to which data can be shared
and tests and evaluations can be combined. The software T&E team
can better support the PM and the CE process by—

(1) Sharing evaluations.
(2) Identifying deficiencies early.
(3) Providing alternative T&E strategies.
(4) Keeping the PM and decision authorities informed.
b. Table 4–2 is an outline of software T&E team members and

15DA PAM 73–7 • 25 July 1997

responsibilities. Figure 4–1 depicts a typical level of member in-
volvement for a major program.

c. Software T&E teamwork is enhanced through the effective use
of working groups as well as informal working relationships.

4–5. Independence in software T&E
Independence in testing and reporting channels promotes objectivity
in T&E activities. There are three basic levels of independence.

a. Independence within the development organization includes
QA, CM, and test personnel who report through a different chain of
management than the software designers and coders.

b. Independence within the PM matrix organizations includes
quality, IV&V, and test personnel who provide evaluation or testing
f o r t h e P M , b u t r e p o r t t h r o u g h a m a j o r s u b o r d i n a t e c o m m a n d
(MSC) or major Army command (MACOM) rather than the PM’s
chain of command.

c . I n d e p e n d e n t d e v e l o p m e n t a l a n d o p e r a t i o n a l t e s t e r s a n d
e v a l u a t o r s . T h e s e p e r s o n n e l r e p o r t f i n d i n g s t o D A d e c i s i o n
authorities.

4–6. Working groups
a. Function. In keeping with the integrated product and process

development concept, a PM establishes and typically leads one or
more working-level IPTs (WIPTs) to monitor various program ac-
tivities and products. The WIPTs usually deal with a particular topic
and bring together the necessary disciplines to address the topic as
they are needed. Two example WIPTs to address the topics of
testing and computer resources are described here. The organization
presented is not mandatory, however the tasks the groups perform
would need to be accomplished by some IPT for the program.

b. Test IPT. This group is comparable to the former TIWG.
Detailed information regarding the composition, responsibilities, ac-
tivities, and products of this group can be found in AR 70–1 and
DA Pam 73–1 and DA Pam 73–2. These items are summarized
below.

(1) The test IPT is the primary T&E team formed to manage and
plan the total T&E effort. This is implemented primarily via the
system’s test and evaluation master plan (TEMP). The team struc-
tures the T&E program for the system and its software, and inte-
grates the varying test, evaluation, and data requirements.

(2) The test IPT is usually established during mission need deter-
mination and concept exploration.

(3) The structure of the team and its principal members varies
depending upon the type of system. Some systems may address
software testing via a WIPT devoted to computer resources in gen-
eral. A computer resources IPT would provide the software T&E
support and input to the system test IPT.

(4) The principal members of the test IPT are the PM, independ-
ent testers and evaluators, user representatives, logisticians, post
deployment support personnel, and trainers. When appropriate to the
system, a survivability/lethality representative and threat integrator
are also principal members. Software quality assurance representa-
tive, development tester, and system engineers may participate as
associate members.

(5) Duties performed by the team include—
(a) Preparing the TEMP for the PM. This is carried out most

effectively by assigning members responsibility for the parts of the
TEMP. Parts I and II are prepared by the PM with inputs from the
principal members. Part III is prepared by the developmental tester
and the independent evaluator and may include input from SQA,
SCM, IV&V agent, and the software developer. Part IV is prepared
by the independent operational tester and the independent evaluator.
Part V requires input from all members to determine T&E resources
(for example, automated testing drivers, simulations, models used,

users to be involved in testing, and so forth). The TEMP format is
provided in DA Pam 73–2.

(b) Chartering other groups to provide specialized input and sup-
port as needed.

(c) Resolving routine problems, assisting in allocation of T&E
resources, determining where data can be collected to answer issues
and criteria, and discussing evaluation and test events.

(d) Assisting preparation of T&E portions of the acquisition strat-
egy, requests for proposal (RFPs) and related contractual documents
as well as assisting evaluation of developer proposals when there are
T&E implications.

(e) Coordinating waivers of approved testing.
(f) Determining the level of evaluation needed when a system

change—
– is not a response to a new or revised operational requirement,

and
– is not a preplanned product improvement to fill an existing

operational requirement, but
– t h e c o m b a t d e v e l o p e r (C B T D E V) o r f u n c t i o n a l p r o p o n e n t

(FP) determines the change to have direct, or significant potential
for, operational impact.

c. Computer resources IPT. A computer resources IPT, compara-
ble to the former CRWG, plans, monitors, and implements aspects
of the acquisition and maintenance of computer resources for the
PM. This is described in detail in AR 70–1 and DA Pam 70–3.

(1) This team is usually established as soon as computer re-
sources are determined to be part of the system.

(2) Membership of the computer resources IPT typically includes
the PM, user representatives, post deployment support personnel
(e.g., LCSEC), independent testers (developmental and operational),
independent evaluators, software quality assurance (product assur-
ance), and other representatives as required.

(3) Duties include, but are not limited to—
(a) P r e p a r i n g a n d u p d a t i n g t h e s y s t e m ’ s C R L C M P . T h e

CRLCMP describes the management strategy for software develop-
ment, testing, and life-cycle support and is required in accordance
with AR 70–1. CRLCMP content and format are outlined in DA
Pam 70–3.

(b) Managing life cycle computer resources for the system.
(c) Monitoring and participating in software development and the

T&E process.
(d) Supporting the test IPT (or equivalent). By means of a Mem-

orandum of Agreement (MOA), a computer resources IPT identifies
the products, analyses, and T&E support it will provide the test
working group. This typically consists of—

– Providing input to the system TEMP.
– Providing software and computer resources expertise to the

test IPT.
– Updating the test IPT periodically with the status of software

T&E, the impacts of software deficiencies, the readiness of software
to support further T&E events, software T&E metrics and other
related factors.

– Reviewing all RFPs to ensure that software T&E factors are
addressed. A checklist of software T&E factors to be addressed in
this review is located in appendix B of this pamphlet.

– S e r v i n g o n S o u r c e S e l e c t i o n E v a l u a t i o n B o a r d s (S S E B s) .
Members of these boards review bidders’ responses to RFPs and
assess the offeror’s capability to develop quality software. Any
member, with the exception of independent operational testers and
operational evaluators, may participate in SSEBs.

16 DA PAM 73–7 • 25 July 1997

Table 4–1
Responsibilities in T&E

Organization Examples T&E responsibility

Materiel Developer (MATDEV)
Also known by other names including:
Matrix Support, assigned Responsible
Agency, Assigned System Developer,
PM’s Matrix Support, Developer, Sys-
tem’s Engineers, SQA, SCM, IV&V, post
deployment software support
(PDSS)LSCEC/CDA, Software Engi-
neers

Army Materiel Command major
subordinate commands (Communica-
tions Electronics Command (CECOM),
Missile Command (MICOM), Tank
Automotive Command (TACOM),
Aviation and Troop Command
(ATCOM), Armament, Munitions
Munitions and Chemical Command
(AMCCOM)) Information Systems
Command (Information Systems
Engineering Command (ISEC))

Information Systems Support Command
(ISSC), (Software Development Cen-

ter-
Washington (SDC-W), Software
Development Center-Lee (SDC-L))

Corps of Engineers

Medical Research and Development
Command

Space and Strategic Defense Command

MACOMs (for assigned information
systems only)

Research, development, T&E acquisition of assigned
systems in response to approved user requirements.

Primary T&E functions for ensuring support to the PM
include—
– T&E support in designing, planning, executing, assess-

ing, and reporting technical T&E programs.
– Effective and timely system integration during system

development to allow for T&E of total system.
– Provide adequate and efficient design reviews, audits,

and quality assurance in support of the T&E program for the
system being acquired.

– Provide IV&V activities during software development.

User’s Representative
Also known as Combat Developer
(CBTDEV) or Functional Proponent (FP)
or Proponent Agency (PA)

Training and Doctrine Command
(TRADOC)

Corps of Engineers
Director of Information Systems for

Command, Control, Communications,
and Computers (DISC4)

Intelligence and Security Command
(INSCOM)

Medical Command
Criminal Investigation Command
Information Systems Command

Any DA Staff section or MACOM may be
an FP for AIS systems

Formulates doctrine, concepts, organization, materiel
requirements and objectives, prioritize materiel needs,
and represent the user in the materiel acquisition
process.

Coordinates with PM & MATDEV on matters pertaining
to area of expertise.

Staff agency responsible for the subject area in which
IMA resources are used or planned for use, including
automation in support of the function performed.

Develops and documents Critical Operational Issues and
Criteria.

Program Executive Officer (PEO) PEO-C3S,
PEO-STAMIS,
PEO-IEW,
PEO-FS, etc.

Responsible for administering a defined number of major or
non-major acquisition programs. PEOs report to and receive
direction from the Army Acquisition Executive (AAE).

PM
Also known as Project Officer (non-major
programs), Program/Project/Product
Manager, Program Sponsor, System
Manager, Operations Manager (during
PDSS)

PM-CCTT,
PM-OPTADS,
PM-SADARM,
PM-ABRAMS,
PM-SIDPERS,
PM-ILOGS,
MACOMs, etc.

Chartered to conduct business on behalf of the Army.
Reports to and receives direction from either PEO or
AAE and is responsible for the centralized management
of an acquisition program.

Responsible for planning and executing comprehensive
T&E program including TEMP preparation, coordination,
distribution, maintenance; establishment of test IPT
(or equivalent); conducting developmental test readiness
review (DTRR), preparing developmental test readiness
statement (DTRS) and operational test readiness
statement (OTRS); assuring conduct of
developmental T&E in accordance with AR 73-1;
providing system support
and training packages.

Responsible (with matrix support) for continuous
evaluation.

Developmental Tester Test and Evaluation Command (TECOM)
ISEC
MACOMs who are MATDEVs

Army command or agency that plans and conducts Govern-
ment developmental testing, including software testing, qualifi-
cation testing, technical feasibility testing, and so
forth. Tests are reported in accordance with AR 73-1.

For assigned AIS, Army Materiel Com-
mand (major subordinate command) may
be different organization during PDSS
(for example, SQA)

17DA PAM 73–7 • 25 July 1997

Table 4–1
Responsibilities in T&E—Continued

Organization Examples T&E responsibility

Developmental Evaluator ISEC Command or agency that addresses acquisition of effective,
supportable, and safe systems by assisting in engineering de-
sign and development, and determining the degree to which
the technical characteristics of the system have been
achieved.

Performs continuous evaluation on assigned systems.

Evaluations/assessments are made to PM and ASARC/
MAISRC.

Operational Tester Operational Test and Evaluation
Command-Test and Experimentation
Command (OPTEC-TEXCOM)

INSCOM

Army command or agency that conducts EUTE, FDTE,
IOT, FOT, LUT, UAT, supplemental site test (SST).

All major systems require independent operational
testers (independent of MATDEV, user, and PM).

MACOMs for non-major AIS and others
as assigned
Information Systems Command (ISC)
(ISEC) (only during PDSS of selected
AIS systems)

System Evaluator OPTEC-Operational Evaluation Com-
mand

(OEC)
INSCOM
Medical Command (MEDCOM) (medical

materiel only in accordance with
AR 73-1 and AR 40-60)

Army command or agency that addresses effectiveness,
suitability, and survivability of the acquired/developed
systems by determining the degree to which the
system’s operational issues and criteria have been
satisfied.

Also addresses acquisition of effective, supportable, and safe
systems by assisting in engineering design and development
and by determining the degree to which the technical charac-
teristics of the system have been achieved.

Performs continuous evaluation of all assigned systems.

Required to be independent of MATDEV, user, and PM.

Directly reports evaluations to ASARC/MAISRC.

Table 4–2
Software T&E team members

Organization Examples Description/Responsibility Summary

Users’ Representatives See table 4-1 The designated combat developers, functional proponents
and/or proponent agents.

Define and refine user needs and requirements to the
developer, T&E personnel, PM, and others.

Integral to ensuring that the system meets the stated user
needs and requirements and must be involved throughout the
entire acquisition process as a constant monitor to achieve
user needs.

Software Developer(s) Central Design Activity (CDA)

Center for Software Engineering (CSE)

Life Cycle Software Engineering
Centers (LCSEC)

Contractors

Organization(s) designated to design and develop
software.

Identified when the concept evaluation requires
advanced demonstration of software as part of
the concept definition process and to reduce risk.

Software developer(s) used during early phases
may or may not be the same as those who will
design and develop the production software.

Responsible for testing the software during
as stated in work directives or the contract.

Software Developer’s internal QA Army Quality Improvement Office (QIO) Provide the internal QA functions for software design, devel-
opment and some test activities.

18 DA PAM 73–7 • 25 July 1997

Table 4–2
Software T&E team members—Continued

Organization Examples Description/Responsibility Summary

Perform audits, evaluate metrics, and carry out comparable
activities to those performed by PM’s SQA personnel.

Report to management other than the software coders/de-
signers. They may all be part of the same contractor or
developer, but do not report through the same chain.

Software quality assurance organization ISEC Generally matrix support to the PM.

Responsible for providing software quality evaluations
throughout the acquisition.

As requested by PM, SQA may assist in conducting software
reviews.

Participate in software walk-throughs, audits, analysis of met-
rics, and other similar activities. Efforts also include manage-
ment of or participation in the software test program and soft-
ware support transition.

Software configuration management
organization

ISEC Generally matrix support to the PM.

Responsible for performing software configuration manage-
ment activities throughout the acquisition.

As requested by PM, SCM may assist in conducting system
configuration control boards (CCBs), participate in software
CCBs and perform software configuration audits.

Post deployment support organization CDAs
LCSECs
CSE
Contractors

Army agency responsible for managing and/or performing
software maintenance.

Provides evaluation of software development risks
throughout life cycle.

Plans for software support, transition, and maintenance dem-
onstrations and prepares software suitability statement for
materiel release.

May also assist the PM in managing software development ef-
fort, including presiding over software related reviews and
managing or participating in the software test program and
software support transition.

Independent verification and validation
organizations

Government agency
Contractor

Designated by the PM to provide additional or corroborative
software design evaluations, witness developer tests, and
perform other quality assessment activities based on PM’s de-
termination of software risk level.

For complex and sophisticated systems, system evaluators
use inputs provided by IV&V agencies to ensure that software
is sufficiently mature.

IV&V agent may not be a part of the development organiza-
tion.

Independent test organizations OPTEC-TEXCOM (operational)
TECOM (developmental)
ISEC

Provide test planning and coordination with software/system
evaluators.

Provide the PM with independent developmental testing or
operational testing support throughout the life cycle.

May not be a part of the development organization.

Independent evaluation/assessment
organizations

OPTEC-OEC (operational)
ISEC

Provide test planning and coordination with software/system
testers.

Provide the PM with evaluation support throughout the life
cycle.

For systems with no IV&V agent, evaluators may be
required to prepare additional reports for system design
reviews regarding software status relative to system
objectives.

Cannot be a part of the development organization.

19DA PAM 73–7 • 25 July 1997

Figure 4-1. Level of T&E involvement

Chapter 5
Pretest Activities

Section I
General

5–1. Purpose
Well in advance of software development and testing, the need for a
mission capability was identified and documented. Acquisition ac-
tivity to respond to that need was initiated. This chapter summarizes
these initial activities and identifies opportunities and procedures to
enhance the software T&E process through CE.

5–2. Scope
a. The sections in this chapter parallel activities in the consoli-

dated software standards of paragraph 2–2 d, but have been ex-
p a n d e d t o i n c l u d e T & E c o n s i d e r a t i o n s b e y o n d t h o s e o f t h e
developer. The events described here span mission need determina-
tion through the design of software entities.

b. The applicability of an activity to any given program and the
depth to which it is carried out is dependent on overall system
factors such as acquisition strategy and level of technical risk. These
activities apply to both AIS and MSCR.

5–3. Objective
The objective of this chapter is to enhance identification of prob-
lems earlier in the life cycle in order correct them with less cost and
disruption to the program. Continuous evaluation of pretest activities
allows early assessment of the software development processes.

Section II
Planning and Oversight

5–4. General
a. Planning and oversight are integral and continuous processes

that take place for the lifetime of a system.
b. Software system planning actions are shown separately from

the core activities to which they pertain in order to emphasize their

20 DA PAM 73–7 • 25 July 1997

criticality regardless of deliverable contract data requirements list
(CDRL) requirements. Completion of appropriate planning is a pre-
requisite to virtually every other activity in this pamphlet.

5–5. Objective
The purpose of planning and oversight is to prepare, record, and
monitor the objectives, methods, and resources necessary to accom-
plish an orderly and effective system and software acquisition. The
different members of the software T&E team perform this role in
their respective areas of responsibility.

5–6. Entry criteria
For the purposes of this pamphlet, documented operational needs
and requirements should exist to initiate this activity.

a. An operational need is identified by the users’ representative,
FP, or CBTDEV in the form of a mission needs statement (MNS).

b. An operational requirements document (ORD) describes the
minimum essential: objectives, acceptable operational performance
parameters, and critical technical characteristics needed to meet the
MNS, for the most promising system concept. The ORD is prepared
by the user or users’ representative.

c. A UFD is required for AR 70–1 acquisition category I and II
systems containing significant automated capabilities, and Class I-
IV AR 25–3 systems for which TRADOC has CBTDEV responsi-
bility. The UFD expands upon the automation aspects of the ORD
and forms a basis for system requirements regarding computer re-
sources. TRADOC Regulation 71–2 and TRADOC Pamphlet 71–7
provide more information in this area.

5–7. Test activities
a. Tests are not inherent during the planning and oversight activi-

ty, but may be arranged and performed at the discretion of the user,
materiel developer (MATDEV) or FP, PM, and/or developer. These
test activities may take the form of controlled experiments more
often than formal tests.

b. Preparing and periodically updating plans is an important part
of planning and oversight. Effective plans in many areas affect the
ultimate acceptance, delivery and maintenance of an operational
system and its support structure. To address the broader scope of
CE, more than just test plans are summarized in this section. Refer-
ences for format, content or policy information are cited.

5–8. Test plans
a. Test and evaluation master plan (TEMP). Every Army acquisi-

tion program that falls under the purview of this pamphlet has a
TEMP, with the exception of Class VI AR 25–3 information sys-
tems. The TEMP is a comprehensive system-wide test document
that integrates all phases of a system’s test program. The TEMP is a
critical acquisition program management document against which
technical progress and life-cycle decisions are assessed. Several sig-
nificant elements of the plan are summarized below. It is essential
that software-intensive materiel systems identify specific cumulative
exit criteria for software, particularly in the critical technical param-
eters, for each testing phase in the TEMP to demonstrate continuing
maturity growth prior to committing to major system tests. The PM
is responsible for the TEMP and is assisted by the test IPT in its
preparation (see para 4–6). Refer to AR 73–1 and DA Pam 73–2 for
details (including software-specific TEMP considerations).

(1) Minimum acceptable operational performance requirements.
These are the critical operational effectiveness, suitability, and sur-
vivability parameters and constraints that must be achieved by the
system in order for it to be formally accepted by end users.

(2) Critical technical parameters. These are the measurable criti-
cal system characteristics that when achieved, allow the minimum
a c c e p t a b l e o p e r a t i o n a l p e r f o r m a n c e r e q u i r e m e n t s t o b e a t t a i n e d .
These characteristics often depend on software.

(3) Critical operational issues. These are concerns related to oper-
ational effectiveness, suitability, and survivability that must be ex-
amined in operational test and evaluation to determine the system’s

capability to perform its mission. If every issue is resolved favora-
bly, the system should be effective, suitable, and survivable when
employed in its intended environment by typical users. Critical op-
erational issues and criteria (COIC) are discussed in detail in DA
Pam 73–3.

b . S o f t w a r e t e s t p l a n (S T P) . T h e S T P d o c u m e n t s a l l t h e
developer’s plans for tests to qualify CSCIs and, if appropriate,
qualify software systems. It includes descriptions of—

(1) Tests to be performed.
(2) Test environment.
(3) Test activity schedules.
(4) Data recording, reduction and analysis procedures.
(5) Traceability of tests to software requirements and system re-

quirements .
c. Test design plan. The independent developmental evaluator is

responsible for the TDP. This plan describes how the system’s
critical technical parameters will be tested during DT. Refer to DA
Pam 73–4 for details.

d. Operational T&E plan. The operational tester and independent
operational evaluator prepare the TEP. It describes how the system’s
operational issues will be tested during OT. The criteria against
which the issues will be evaluated or assessed are included. Refer to
DA Pam 73–5 for details.

5–9. Other plans
a. Computer resources life cycle management plan. This plan is

prepared and maintained by the PM, often by means of a computer
resources IPT (see para 4–6). A CRLCMP is required for software-
intensive systems developed under AR 70–1 and serves as a memo-
r a n d u m o f a g r e e m e n t b e t w e e n t h e M A T D E V a n d r e s p o n s i b l e
LCSEC. Comparable information is also required for AR 25–3 AIS
and is documented in the system’s Management Plan (MP) and
System Decision Paper. In effect, the CRLCMP is the Government’s
software development plan for a system’s computer resources over
the life time of that system. It forms a basis for all strategy deci-
sions involving the computer resources and integrates all aspects of
computer resource acquisition and maintenance from resource iden-
tification to post deployment support. See AR 70–1, DA Pam 70–3
and AR 25–3 for details.

b. Software development plan. The SDP describes a developer’s
plans for performing a software development effort, whether that
e n t a i l s n e w d e v e l o p m e n t , r e u s e , r e - e n g i n e e r i n g , m a i n t e n a n c e o r
other software production activities. As directed by the acquirer, the
SDP provides—

(1) The software development process to be used including a
breakdown of planned builds, with the objectives and activities
comprising each build.

(2) Overall software development methods and standards for each
type of software product.

(3) Approaches for incorporating or developing reusable software
products.

(4) How critical requirements will be handled.
(5) The approach employed to allocate and monitor use of com-

puter hardware resources.
(6) Provisions for acquirer access to developer team facilities for

reviewing software products and activities.
(7) Plans for conducting, monitoring and assessing risk for each

detailed software development activity that applies to the effort.
(8) Methods and mechanisms to implement configuration man-

agement, quality assurance, internal product evaluation and correc-
tive action on the processes and products described by the plan.

(9) A proposed set of joint management and joint technical re-
views and approaches for their conduct.

(10) Plans for other related activities such as managing risk,
managing subcontractors, handling security and privacy issues, in-
terfacing with IV&V agents, applying software management indica-
tors and metrics.

(11) A description of how the developer’s organization supports
the project and identifies resources.

(12) The organization of software activities into an integrated
project network and all applicable schedules.

21DA PAM 73–7 • 25 July 1997

c. Software installation plan (SIP). The developer prepares a SIP
when involved in installing software at user sites and the process is
complex enough to require documented instructions. The tasks allo-
cated to the developer, user, computer operations staff or others
participating in the installation are described, including site specific
information, if applicable. Tasks typically include preparing the
site(s), documenting installation instructions, training users and con-
verting from existing systems.

d . S o f t w a r e t r a n s i t i o n p l a n . T h e S T r P i s p r e p a r e d b y t h e
developer and identifies the hardware, software and other resources
needed for life-cycle support of deliverable software. It includes the
developer’s plans for transitioning deliverable items to the appropri-
ate support agency and addresses training of support personnel.

e. Software QA plan. In this pamphlet, the software QA plan
(SQAP) term refers to the documented policy, plans, and procedures
of the acquirer, in this case the Government, for accomplishing the
tasks comprising quality conformance assessment of software prod-
ucts and activities throughout a software-intensive system’s lifetime.
Software QA material may alternatively be documented in the over-
all system’s QA plan. See chapter 8 for more information on quality
assurance.

f. Software CM plan. In this pamphlet, the software CM plan
(SCMP) term refers to the documented policy, plans, and procedures
of the acquirer for accomplishing configuration management tasks
involving software products and activities throughout a software-
intensive system’s lifetime. Software CM material may alternatively
be documented in the overall system’s CM plan. See chapter 8 for
more information on configuration management.

g. Related plans. Other system level plans that may influence the
implementation and test of software-intensive systems are—

(1) Basis of issue plan and qualitative and quantitative personnel
requirements information. See AR 71–2, AR 71–9 and DA Pam
70–3 for the basis of issue plan (BOIP) and qualitative and quantita-
tive personnel requirement information (QQPRI).

(2) Integrated logistics support plan. See AR 700–127, DA Pam
70–3 and DA Pam 700–55 for the integrated logistics support plan
(ILSP).

(3) Reliability, availability, maintainability rationale report. See
AR 71–9 and DA Pam 70–3 for the reliability, availability, main-
tainability (RAM) rationale report (RRR).

(4) S y s t e m m a n p o w e r a n d p e r s o n n e l i n t e g r a t i o n m a n a g e m e n t
plan. See AR 602–2 and DA Pam 70–3 for the system manpower
and personnel integration (MANPRINT) management plan (SMMP).

5–10. Evaluation activities
a. Per AR 73–1, the PM provides Army testers and evaluators the

opportunity to participate in preparing the testing portion of requests
for proposals to ensure that T&E requirements are adequately re-
flected in contractual documents. Likewise, software support person-
nel ensure that applicable computer resource policy is invoked in
work statements and that deliverables are adequate for life time
software maintenance.

b. The software T&E community provides input and review of
in-house work directives and other work tasks relating to software
d e v e l o p m e n t a n d T & E a s w e l l a s c o n t r a c t s t a t e m e n t s o f w o r k
(SOWs). A checklist for reviewing these documents and sample
contract clauses are provided in appendix B. Examples of some of
the issues assessed are—

(1) Collection or delivery of metrics.
(2) Ensuring requirements and design reviews are adequate and

appropriate to the acquisition strategy.
(3) Delivery of software problem reports.
(4) Allowance for hooks, ports, etc. to enable collecting test data

via instrumentation.
(5) Appropriate use of modeling or simulation in lieu of, or to

augment, testing.
(6) Opportunities for user involvement and feedback during the

development process.
c. The assessment of information in specific plans prepared by

the developer is described in the Evaluation Activities paragraph of
its corresponding activity elsewhere in this pamphlet.

d. Monitoring software products and processes against plans by
members of the software T&E team occurs over the life of the
system.

5–11. Metrics
The metrics marked with an x in table 5–1 apply to planning and
oversight. All metrics used on a program should be routinely exam-
ined as part of the oversight process.

Table 5–1
Metrics applicable to planning and oversight

Applies Metric

x Cost
x Schedule
x Computer resource utilization
x Software engineering environment
x Requirements traceability
x Requirements stability
x Design stability
x Complexity
x Breadth of testing
x Depth of testing
x Fault profiles
x Reliability

5–12. Decision criteria
Planning and oversight is an ongoing activity. However, the prepa-
ration, coordination and updating of plans identified above should
be adequate and timely enough to support the activities guided by
those plans. This condition is noted when a plan is identified as an
entry criterion for an activity.

Section III
The Software Development Environment

5–13. General
a. During this activity, the organization that is to develop or

perform maintenance on software, establishes a suitable environ-
m e n t t o m a n u f a c t u r e o r s u s t a i n s o f t w a r e p r o d u c t s . T h e t e r m “
developer” used below is synonymous with“ maintainer.”

b. If a multiple build system or software acquisition strategy is in
effect, this activity for a build means establishing the environment
needed to complete that build.

5–14. Objective
The objective of this activity is to put in place the tools, controls
a n d s u p p l e m e n t a r y r e s o u r c e s n e c e s s a r y t o f a c i l i t a t e s o f t w a r e
production.

5–15. Entry criteria
Sufficient knowledge of the software production job to be per-
formed and plans for the resources necessary to support it should
occur prior to this activity. Plans for the software development
e n v i r o n m e n t w e r e d o c u m e n t e d i n t h e d e v e l o p e r ’ s S D P a n d t h e
CRLCMP.

5–16. Test activities
Testing during this activity is typically done informally by the
developer to confirm that elements of various development environ-
ments operate as intended.

5–17. Evaluation activities
a. CE actions consist of periodically assessing the plans and

implementation status of applicable software development environ-
ments in the areas of software engineering, software test, software
development library, software development files and nondeliverable

22 DA PAM 73–7 • 25 July 1997

software. The assessments are typically performed by PM, SQA,
IV&V or LCSEC personnel.

b. Assessment criteria include determinations whether—
(1) Evidence exists that elements of an environment can perform

their intended functions.
(2) Required elements of an environment are in place in advance

of activities that will use them.
(3) Elements of, or information from, different environments are

compatible or capable of being shared without excessive reformat-
ting or re-entry of data.

(4) T h e e n v i r o n m e n t s a r e i n t e g r a l , n o t a n c i l l a r y , t o s o f t w a r e
production.

(5) Adequate and sufficient controls are in place to assure both
development environment and software product integrity.

(6) The environments provide adequate information to manage
software development.

5–18. Metrics
a. The metrics marked with an x in table 5–2 apply to the

software development environment.
b. The schedule metric should show when critical items in the

development environment will be available and usable and the activ-
ities that depend on them. While application dependent, examples of
critical items are custom test fixtures and test articles, nondevelop-
ment software, and training.

c. The software engineering environment (SEE) metric applies as
an indicator of past ability to establish and maintain an adequate
development environment.

d. The computer resource utilization (CRU) metric can be used to
monitor utilization of development resources. Unanticipated demand
for resources could result in delays in software production schedules
or additional costs to augment the environment at a later time.

Table 5–2
Metrics applicable to software development environment

Applies Metric

x Cost
x Schedule
x Computer resource utilization
x Software engineering environment

Requirements traceability
Requirements stability
Design stability
Complexity
Breadth of testing
Depth of testing
Fault profiles
Reliability

5–19. Decision criteria
Representative products, documents and decision criteria typically
addressed during the software development environment activity are
shown in table 5–3.

Table 5–3
Software development environment decision criteria

Primary responsibility Principal products Decision criteria
affected

S/W Developer & SDP Adequate coverage of de-
PM velopment environments

and their support over the
work period

S/W Developer & Metrics Report(s) Acceptable degrees of S/W
PM, Gov’t. SQA or development resource allo-
IV&V cations and utilization

Section IV
System Requirements Analysis

5–20. General
a. The developer participates in defining and recording the re-

quirements to be met by the system during this activity. This in-
cludes documenting the methods to be used to ensure that each
requirement has been met.

b. If a multiple build system acquisition strategy is in effect, a
system’s requirements may not be fully defined until its final build.
System requirements analysis for a given build, however, means
defining the system requirements allocated to that build.

5–21. Objective
The objective of this activity is to identify and document the func-
tional, performance, interface, and other acquirer-imposed require-
ments for a system.

5–22. Entry criteria
Defined and documented user requirements are a prerequisite to this
activity.

5–23. Test activities
a. Tests are not inherent during system requirements analysis, but

may be planned and performed at the discretion of the user, MAT-
DEV or FP, PM, and/or developer. These test activities may take the
form of controlled experiments more often than formal tests.

b . I f s y s t e m q u a l i f i c a t i o n t e s t i n g a p p l i e s t o t h e b u i l d , t h e
developer prepares a system test plan to document the system’s
qualification tests. For software-intensive systems and information
systems, test requirements are typically documented in the STP.

5–24. Evaluation activities
a. Continuous evaluation activities performed within the T&E

c o m m u n i t y n e e d t o i n c l u d e u s e r r e p r e s e n t a t i v e s . A c t i v i t i e s p e r -
formed are—

(1) Review of the system’s OCD to determine whether adequate
analysis and understanding of user inputs, feedback and needs has
t a k e n p l a c e t o e n s u r e s y s t e m r e q u i r e m e n t s a r e a c c u r a t e a n d
complete.

(2) In-depth reviews of the SSS and interface requirements speci-
fication (IRS) for clear and complete descriptions of requirements
regarding topics such as—

(a) Required states and modes of operation.
(b) Capabilities or functions of the system.
(c) External and internal interfaces.
(d) Installation specific dependencies.
(e) Safety, privacy and security.
(f) Use or incorporation of reused and nondevelopment items.
(g) Training and personnel related considerations.
(h) Priority, timing, sequencing, and criticality of requirements,

functions, or interface characteristics.
(3) Assessment of requirements testability.
(4) Tracing from system requirements back to user requirements.

The CBTDEV or FP participates in the requirements trace to ensure
that the users’ requirements have been properly interpreted by sys-
tem specification writers.

(5) Maximum allowable use of computer resources and the con-
ditions under which utilization measurements should be taken.

(6) Verifying that the ability to collect performance data during
system-level tests, including formal Government tests, is addressed.

(6) Implementation and analysis of applicable metrics.
(7) Review of the draft STP for applicability and consistency of

s y s t e m ’ s q u a l i f i c a t i o n t e s t (s) w i t h t h e s y s t e m ’ s S S S a n d I R S
requirements.

b. If needed to resolve open issues or address areas of risk identi-
fied in the evaluation process, a formal system requirements review
is appropriate.

23DA PAM 73–7 • 25 July 1997

5–25. Metrics
a. The metrics marked with an x in table 5–4 apply to system

requirements analysis.

Table 5–4
Metrics applicable to system requirements analysis

Applies Metric

Cost
x Schedule

Computer resource utilization
x Software engineering environment
x Requirements traceability
x Requirements stability

Design stability
Complexity
Breadth of testing
Depth of testing
Fault profiles
Reliability

b. Requirements should show an acceptable degree of complete-
ness, traceability and stability.

c. The SEE metric helps assess the capabilities of various soft-
ware developers and how well their products meet requirements.

5–26. Decision criteria
Representative products, documents and decision criteria typically
addressed during system requirements analysis are shown in table
5–5. Items marked “ final” should contain comprehensive material
that corresponds to the current build. Whether performed through a
series of informal walk-throughs and assessments or by means of
formal reviews, the issues of testability, performance, timing, and
interfaces should be adequately addressed and documented prior to
completing an iteration of the system requirements analysis activity.

Table 5–5
System requirements analysis decision criteria

Primary responsibility Principal products Decision criteria
affected

User Representa- UFD Final
tive and MATDEV

PM, MATDEV and SSS, IRS 1 Draft
Developer OCD Draft

Developer and PM System require- Open issues resolved
ments review(s), if
required

System or S/W Requirements Updated
Developer & PM, Trace(s)
Gov’t. SCM, Gov’t.
SQA or IV & V Metrics Reports Acceptable degrees of

system requirements
traceability and stability

Notes:
1 System interface material may alternatively be documented in the IRS.

Section V
System Design

5–27. General
a. During this activity system requirements are iteratively defined

and recorded by the developer as design decisions and implementa-
tion descriptions. This includes proof of traceability between system
requirements and the hardware and software configuration items
comprising the design.

b. The levels of system-wide design, system architectural design

and detailed design may be documented in succession or in parallel
depending on the quantity of units comprising the design and the
complexity of their interactions.

c. If a multiple build system acquisition strategy is in effect, a
system’s design may not be fully defined until the final build.
System design for a given build, however, means defining the de-
sign necessary to meet the requirements to be implemented in that
build.

5–28. Objective
The objective of this activity is to define all design characteristics
necessary to describe major system components as hardware config-
urations items (HWCIs), CSCIs or manual operations and the inter-
actions among them.

5–29. Entry criteria
Sufficient system requirements analysis should occur prior to this
activity in order to allocate system requirements to system design
entities.

5–30. Test activities
Tests are not inherent during system design, but may be planned and
performed at the discretion of the user, MATDEV or FP, PM, and/
or developer. These test activities may take the form of controlled
experiments more often than formal tests.

5–31. Evaluation activities
a. Continuous evaluation includes—
(1) I n - d e p t h r e v i e w s o f s y s t e m / s u b s y s t e m d e s i g n d e s c r i p t i o n

(SSDD), interface design description (IDD), DBDD for clear and
complete descriptions of system-wide decisions and a system archi-
tecture that, as applicable—

(a) Provides growth capability.
(b) Addresses interoperability requirements.
(c) Addresses safety, security, and privacy issues.
(d) Identifies component status such as: reused, reengineered,

developed for reuse, new development, etc.
(e) Allocates computer hardware resources to design components

and estimates capacity allotted to each component.
(f) Addresses all interfaces among system components as well as

external system interfaces.
(2) Assessment of design testability.
(3) T r a c i n g f r o m s y s t e m d e s i g n c o m p o n e n t s b a c k t o s y s t e m

requirements.
(4) Assuring user interface designs meet user requirements.
(5) Reviewing the use of nondeveloped software in the design to

consider percent of modification, availability of documentation, and
future testability or supportability issues.

(6) Implementation and analysis of applicable metrics.
b. If needed to resolve open issues or address areas of risk identi-

fied in the evaluation process, a formal system design review is
appropriate.

5–32. Metrics
a. The metrics marked with an x in table 5–6 apply to system

design.

Table 5–6
Metrics applicable to system design

Applies Metric

x Cost
x Schedule
x Computer resource utilization
x Software engineering environment
x Requirements traceability
x Requirements stability

Design stability
Complexity
Breadth of testing
Depth of testing
Fault profiles

24 DA PAM 73–7 • 25 July 1997

Table 5–6
Metrics applicable to system design—Continued

Applies Metric

Reliability

b. Requirements should show an acceptable degree of complete-
ness, traceability, and stability.

c. Specific computer resources are identified in this activity and
allocations of their total capacities to the software design compo-
nents are made.

d. The SEE metric helps assess the capabilities of various soft-
ware developers and how well their products meet requirements.

5–33. Decision criteria
Representative products, documents, and decision criteria typically
a d d r e s s e d d u r i n g s y s t e m d e s i g n a r e s h o w n i n t a b l e 5 – 7 . I t e m s
marked “ final” should contain comprehensive material that corre-
sponds to the current build. Whether performed through a series of
informal walk-throughs and assessments or by means of formal
reviews, the issues of testability, performance, interfaces and main-
tainability should be adequately addressed and documented prior to
completing an iteration of the system design activity.

Table 5–7
System design decision criteria

Primary responsibility Principal products Decision criteria
affected

Developer & PM SSDD Final

IDD, DBDD 1 Final (system design sec-
tions)

System design Open issues resolved
review(s), if
required When SSDD, IDD are

approved, they become
part of functional
baseline

System or S/W Requirements Updated
Developer & PM, Trace(s)
Gov’t. SQA or
IV&V Metrics Report(s) Acceptable degrees of:

requirements traceability
and stability; CRU
allocations

Notes:
1 IDD or DBDD material may alternatively be documented in the SSDD

Section VI
Software Requirements Analysis

5–34. General
a. During this activity the software requirements to be met by a

CSCI are defined and recorded by the developer. This includes
documenting the methods to be used to ensure that each requirement
has been met and proof of traceability between CSCI requirements
and system requirements.

b. If a multiple build software acquisition strategy is in effect, a
CSCI’s requirements may not be fully defined until the final build.
Software requirements analysis for a given build, however, means
defining the CSCI requirements allocated to that build.

5–35. Objective
The objective of this activity is to identify and document the func-
tional, performance, interface, and other acquirer-imposed require-
ments for a CSCI.

5–36. Entry criteria
Sufficient system requirements analysis and system design should
have been completed prior to this activity in order to identify and
allocate system requirements to software.

5–37. Test activities
a. Tests are not inherent during software requirements analysis

but may be planned and performed at the discretion of the developer
and PM.

b . I f s o f t w a r e q u a l i f i c a t i o n t e s t i n g a p p l i e s t o t h e b u i l d , t h e
developer prepares a preliminary STP in parallel with requirements
analysis to document the CSCI’s qualification tests (see sec II of
this chapter).

5–38. Evaluation activities
a. Continuous evaluation activities performed within the T&E

c o m m u n i t y n e e d t o i n c l u d e u s e r r e p r e s e n t a t i v e s . A c t i v i t i e s p e r -
formed are—

(1) In-depth reviews of SRS, IRS for clear and complete descrip-
tions of requirements regarding topics such as—

(a) Required states and modes of operation.
(b) Capabilities or functions the CSCI implements.
(c) External and internal interfaces.
(d) Installation specific dependencies.
(e) Safety, privacy and security.
(f) Maximum allowable use of computer resources and conditions

under which computer resource measurements apply.
(g) Use or incorporation of reused and nondevelopment item

software.
(h) C o m m u n i c a t i o n n e t w o r k , t r a i n i n g , a n d p e r s o n n e l r e l a t e d

considerations.
(i) Priority, timing, sequencing, and criticality of requirements,

functions, or interface characteristics.
(j) Qualification method(s) for each requirement.
(2) Assessment of requirements testability.
(3) Tracing from software requirements back to system require-

ments. The CBTDEV or FP participates in the requirements trace to
ensure that the users’ requirements have been properly interpreted
by software specification writers.

(4) Implementation and analysis of applicable metrics.
(5) Review of the draft STP for applicability and consistency of

CSCI qualification test(s) with the CSCI’s SRS, IRS requirements,
and proposed qualification methods.

b. If needed to resolve open issues or address areas of risk identi-
fied in the evaluation process, a formal software requirements re-
view is appropriate.

5–39. Metrics
a. The metrics marked with an x in table 5–8 apply to software

requirements analysis.

Table 5–8
Metrics applicable to software requirements analysis

Applies Metric

x Cost
x Schedule
x Computer resource utilization
x Software engineering environment
x Requirements traceability
x Requirements stability

Design stability
Complexity
Breadth of testing
Depth of testing
Fault profiles
Reliability

25DA PAM 73–7 • 25 July 1997

b. More specific allocations of computer resource utilization be-
come available through this activity. The allocations should be com-
pliant with the contract and higher level specifications.

c. Requirements should show an acceptable degree of complete-
ness, traceability and stability.

d. The SEE metric helps assess the capabilities of various soft-
ware developers and how well their products meet requirements.

5–40. Decision criteria
Representative products, documents, and decision criteria typically
addressed during software requirements analysis are shown in table
5–9. Items marked “ final” should contain comprehensive material
that corresponds to the current build. Whether performed through a
series of informal walkthroughs and assessments or by means of
formal reviews, the issues of testability, performance, timing, and
interfaces should be adequately addressed and documented prior to
c o m p l e t i n g a n i t e r a t i o n o f t h e s o f t w a r e r e q u i r e m e n t s a n a l y s i s
activity.

Table 5–9
Software requirements analysis decision criteria

Primary responsibility Principal products Decision criteria
affected

S/W Developer & SRS, IRS 1 Final
PM

STP Draft

Software require- Open issues resolved
ments review(s), if
required

When SRS, IRS, STP are
approved, they become part
of allocated baseline

S/W Developer & Requirements Updated
PM, Gov’t. SCM, Trace(s)
Gov’t. SQA or
IV&V Metrics Report(s) Acceptable degrees of:

requirements traceability
and stability; CRU
allocations

Notes:
1 IRS material may alternatively be documented in the SRS.

Section VII
Software Design

5–41. General
a. During this activity the software requirements of a CSCI are

iteratively defined and recorded by the developer as design deci-
s i o n s a n d i m p l e m e n t a t i o n d e s c r i p t i o n s . T h i s i n c l u d e s p r o o f o f
traceability between CSCI requirements and the software units com-
prising the design.

b. The levels of CSCI-wide design, CSCI architectural design
and detailed design may be documented in succession or in parallel
depending on the quantity of units comprising the design and the
complexity of their interactions.

c. If a multiple build software acquisition strategy is in effect, a
CSCI’s design may not be fully defined until the final build. Soft-
ware design for a given build, however, means defining the design
necessary to meet the CSCI requirements to be implemented in that
build.

5–42. Objective
The objective of this activity is to define all design characteristics
necessary for the production of actual software entities.

5–43. Entry criteria
The CSCI should have successfully completed those aspects of its

software requirements analysis activity necessary for the level of
software design being performed.

5–44. Test activities
a. Specific tests are not inherent during software design, but may

be planned and performed at the discretion of the developer and
PM. Demonstrations of evolving capability by means of prototypes,
mockups of user interfaces or other mechanisms are recommended,
however, to elicit user feedback and changes in the design prior to
significant commitment of design to code.

b . I f s o f t w a r e q u a l i f i c a t i o n t e s t i n g a p p l i e s t o t h e b u i l d , t h e
developer completes the STP to document the CSCI’s qualification
tests (see sec II of this chapter).

5–45. Evaluation activities
a. Continuous evaluation activities performed at this time focus

on analysis of the proposed software design to accurately reflect its
software requirements and to ascertain its technical adequacy to
a c h i e v e a l l o c a t e d s y s t e m r e q u i r e m e n t s . T o a c c o m p l i s h t h i s
includes—

(1) In-depth reviews of the software design description (SDD),
IDD and DBDD for validity and completeness of the technical
design, such as—

(a) Design decisions and conventions regarding inputs and out-
puts to other systems, HWCIs, CSCIs, and users.

(b) Structure and interrelationships of the units comprising the
CSCI.

(c) Flow of data and execution control.
(d) Recovery from malfunctions and handling of unexpected con-

ditions or data.
(e) C o m p u t e r r e s o u r c e a l l o c a t i o n s f o r i t e m s s u c h a s s t o r a g e ,

memory and communications/network equipment.
(2) Review of user interfaces for simplicity, logical sequencing,

consistency, and other human factors aspects.
(3) T r a c i n g s o f t w a r e d e s i g n e n t i t i e s b a c k t o s o f t w a r e

requirements.
(4) Implementation and analysis of applicable metrics.
(5) If software qualification testing applies to the build, the final

STP is reviewed for applicability and consistency of CSCI qualifica-
tion test(s) with the CSCI’s SRS and IRS requirements.

b. If needed to resolve open issues or address areas of risk identi-
fied in the evaluation process, a formal software design review is
appropriate.

5–46. Metrics
a. The metrics marked with an x in table 5–10 apply to software

design.

Table 5–10
Metrics applicable to software design

Applies Metric

x Cost
x Schedule
x Computer resource utilization
x Software engineering environment
x Requirements traceability
x Requirements stability
x Design stability
x Complexity

Breadth of testing
Depth of testing
Fault profiles
Reliability

b. CRU allocations to lower levels of software should not exceed
overall requirements and should be compliant with the allocations in
the specifications.

c. Requirements should show an acceptable degree of complete-
ness, traceability, and stability.

26 DA PAM 73–7 • 25 July 1997

d. Program design language (PDL) is often used during this ac-
t i v i t y . I f c o m p l e x i t y v a l u e s f o r u n i t s e x c e e d P D L t h r e s h o l d s ,
redesign may be necessary unless an adequate rationale is given.

e. The SEE metric helps assess the capabilities of various soft-
ware developers and how well their products meet requirements.

5–47. Decision criteria
Representative products, documents, and decision criteria typically
addressed during software design are shown in table 5–11. Items
marked “ final” should contain comprehensive material that corre-
sponds to the current build. A series of informal walk-throughs and
assessments is recommended to address the majority of noncritical
design issues. However, prior to completing an iteration of the
software design activity, the issues of testability, flow of control and
d a t a , e r r o r r e c o v e r y , a n d i n t e r f a c e s , p a r t i c u l a r l y u s e r i n t e r f a c e s ,
should be adequately addressed and documented.

Table 5–11
Software design decision criteria

Primary responsibility Principal products Decision criteria
affected

S/W Developer & SDD, IDD, DBDD 1 Draft 2

PM
STP Final 2

Preliminary design Open issues resolved
review(s), if
required

S/W Developer & Requirements Updated 2

PM, Gov’t. SQA or Trace(s)
IV&V

Metrics Report(s) Acceptable degrees of:
requirements traceability
and stability; CRU
allocations 2

S/W Developer & SDD, IDD, DBDD 1 Final 3

PM
Detailed design Open issues resolved
review(s), if
required

S/W Developer & Requirements Updated 3

PM, Gov’t. SQA or Trace(s)
IV&V

Metrics Report(s) Acceptable degrees of: re-
quirements traceability and
stability; CRU allocations;
design stability; complexity,
if PDL is used 3

Notes:
1 IDD and DBDD material may alternatively be documented in the SDD.
2 Preliminary design.
3 Detailed design.

Chapter 6
Test Activities

Section I
General

6–1. Purpose
This chapter summarizes activities comprising software production
and testing. Opportunities and procedures to enhance the process
through CE are identified.

6–2. Scope
a. The sections in this chapter parallel the activities of the con-

solidated software standards of paragraph 2–2 d, but have been
expanded to include considerations beyond those of the developer.
The events described here span implementation of software units
through Government operational testing.

b. The applicability of an activity to any given program and the
depth to which it is carried out is dependent on overall system
factors such as acquisition strategy and level of technical risk.

c. Many of the T&E activities described below are repeated for
each iteration of the design. Test activities are also often combined
when test objectives are compatible, the integrity of the results is
n o t j e o p a r d i z e d , a n d i n d e p e n d e n c e o f e v a l u a t i o n s w i l l n o t b e
compromised.

d . D u r i n g i n i t i a l l e v e l s o f s o f t w a r e d e v e l o p m e n t t e s t i n g , t h e
developer has control over the T&E process. Software quality assur-
ance and verification and validation (V&V) efforts are significant
during each level of testing. Responsibility and control of testing
shifts to Government agencies, the acquirer and user, as testing
progresses.

6–3. Objective
The objectives of test activities are to verify that the item under test
o p e r a t e s p r e d i c t a b l y a n d r e l i a b l y a n d t o d e t e c t m a l f u n c t i o n s o r
omissions.

Section II
Software Implementation and Unit Testing

6–4. General
a. The developer transforms the software’s design into computer

programs and data structures during this activity. Each implemented
data unit or program unit is tested to cover all aspects of its detailed
design. Unit testing is the lowest level of test executed on software.

b. If a multiple build software acquisition strategy is in effect,
this activity for a CSCI is not complete until that CSCI’s final build.
Software implementation and unit testing for a build includes those
units, or parts of units, needed to meet the requirements to be
implemented in that CSCI’s build.

6–5. Objective
The objective of this activity is to produce software program and
data entities. The purpose of unit testing is to validate requirements
expressed in the detailed design descriptions and software require-
ments specifications. In addition, unit testing is performed to ensure
that all source statements in a unit have been executed, each condi-
tional branch has been taken, and that all boundary values (for
example, minimum-maximum values) and edit criteria are tested.

6–6. Entry criteria
The detailed design of a unit should be completed prior to its
implementation and test.

6–7. Test activities
a. The developer establishes test cases, test procedures and test

data for each software unit and records this information in the
appropriate SDFs.

b. If a set of benchmark test files (BMTF) exists, it should also
be used as test data.

c. The developer conducts unit testing in accordance with the test
cases, procedures and data in the SDFs.

d. Results of unit testing are recorded in the SDFs.
e. Test results are analyzed, software revised and retested, and

the SDFs and other software products updated based on the test
results.

f. The operating environment for unit testing is usually a local
test bed system.

6–8. Evaluation activities
a. To gain insight into the software developer’s progress, SDFs

27DA PAM 73–7 • 25 July 1997

are reviewed. These evaluations are usually conducted by an inde-
pendent organization whose management structure is separate from
the software developer’s management. A developer’s quality assur-
ance group or the Government’s SQA, V&V or IV&V organizations
are examples. The evaluations verify that—

(1) Software is developed in accordance with the detailed design
and applicable development and coding standards identified in the
SDP.

(2) Results and analysis of unit testing are recorded in the SDFs
and revisions to software products, including unit test cases, proce-
dures, and data, continue to track requirements.

b. Static analysis, data flow analysis and code walk-throughs are
performed by the developer to assess software modularity, quality,
and maintainability.

c. Completed and published system documentation and training
packages are not normally available for unit level testing. However,
if such documentation is available, it should also be reviewed.

d. Implementation and analysis of applicable metrics.

6–9. Metrics
a. The metrics marked with an x in table 6–1 apply to software

implementation and unit testing.

Table 6–1
Metrics applicable to software implementation and unit testing

Applies Metric

x Cost
x Schedule
x Computer resource utilization
x Software engineering environment
x Requirements traceability
x Requirements stability
x Design stability
x Complexity
x Breadth of testing
x Depth of testing
x Fault profiles

Reliability

b . M e a s u r e d v a l u e s f o r c o m p u t e r r e s o u r c e u t i l i z a t i o n b e c o m e
available at this time.

c. With the start of unit testing, data to support the breadth and
depth of testing metrics can be collected and analyzed.

d. As coded units are placed under project CM control, values for
fault profiles and design stability become available as a result of
testing.

e . I f c o m p l e x i t y v a l u e s f o r c o d e d u n i t s e x c e e d t h r e s h o l d s ,
redesign should occur unless an adequate rationale is given.

6–10. Decision criteria
Representative products, documents and decision criteria typically
addressed during implementation and unit testing are shown in table
6–2. Only units which have been successfully tested are permitted to
be integrated into components or programs for the next level of
testing.

Table 6–2
Software implementation and unit testing decision criteria

Primary responsibility Principal products Decision criteria
affected

S/W Developer SDFs Adequate evidence of unit
development and testing

S/W Developer Requirements Updated
and Gov’t. SQA or Trace(s)
IV&V

Table 6–2
Software implementation and unit testing decision
criteria—Continued

Primary responsibility Principal products Decision criteria
affected

Metrics Report(s) Acceptable degrees of: re-
quirements traceability and
stability, computer resource
utilization, design stability,
breadth and depth of test-
ing, fault profiles

Section III
Unit Integration and Testing

6–11. General
a. During this activity, the developer integrates two or more

software units and tests the composite software to ensure it works as
intended. This process continues until all units in a CSCI have been
integrated and tested.

b. If a multiple build software acquisition strategy is in effect,
this activity for a CSCI is not complete until that CSCI’s final build.
Unit integration and testing for a build means integrating software
developed in the current build with other software developed in that
and previous builds and testing the results.

c. Historical equivalent activities are: CSC integration and tes-
ting—MSCR; SDT module/program testing—AIS.

6–12. Objective
The objective of this activity is to produce a CSCI which has
completed developer internal CSCI testing covering all aspects of
CSCI-wide design and CSCI architectural design. All integrated
units should accept valid inputs and produce correct outputs.

6–13. Entry criteria
The lowest level units should successfully complete the implementa-
tion and unit test activity prior to their integration with other units.

6–14. Test activities
a. The developer establishes test cases, test procedures and test

data for conducting unit integration and testing and records this
information in the appropriate SDFs.

b. Benchmark test files are used as test data, if available.
c. The developer conducts unit integration testing in accordance

with the test cases, procedures, and data in the SDFs.
d. Results of unit integration testing are recorded in the SDFs.
e. Test results are analyzed, software revised and retested, and

the SDFs and other software products updated based on the test
results.

f. The operating environment for unit integration and testing is
usually a local test bed system.

g. With much of the software integrated, limits and bounds are
tested and multiple paths executed to ensure that integration is
proceeding in a robust manner.

h. Tests addressing run time efficiency and stressing the software
at the limits of its specified requirements are also performed.

i. All discrepancies, malfunctions, and errors should be docu-
mented in problem/change reports in accordance with paragraph 2–2
f.

j. If CSCI qualification testing applies to the build, the developer
can document the appropriate qualification test cases in the software
test description (STD) as part of the CSCI qualification test activity.

6–15. Evaluation activities
a. Unit integration and testing is a developer internal activity. To

gain insight into this process, software quality assurance, IV&V,
a n d V & V p e r s o n n e l g e n e r a l l y p e r f o r m e v a l u a t i o n s o n - s i t e a n d

28 DA PAM 73–7 • 25 July 1997

report to the other members of the software T&E community. The
SDFs are reviewed to verify—

(1) Software is integrated in accordance with the documented
unit integration and test approach and procedures in the SDP.

(2) Results and analysis of unit integration and testing are re-
corded in the SDFs.

(3) The developer revises software products, including unit inte-
gration test cases, procedures, and data, based on test results. The
d e v e l o p e r a l s o e n s u r e s t h a t t h e s e r e v i s i o n s c o n t i n u e t o a d d r e s s
requirements.

b. The developer performs static analysis, data flow analysis and
c o d e w a l k - t h r o u g h s t o a s s e s s s o f t w a r e m o d u l a r i t y , q u a l i t y , a n d
maintainability.

c. Completed and published system documentation and training
packages are not normally available for unit integration testing.
However, if such documentation is available, it should also be
reviewed.

d. Implementation and analysis of applicable metrics.

6–16. Metrics
a. The metrics marked with an x in table 6–3 apply to unit

integration and testing.
b. Breadth and depth of testing become more refined in this

activity.
c. As unit integration and testing proceeds, the design progress

component of the design stability metric should indicate more and
more units are being entered into CM.

6–17. Decision criteria
Representative products, documents and decision criteria typically
addressed during unit integration and testing are shown in table 6–4.

Table 6–3
Metrics applicable to unit integration and testing

Applies Metric

x Cost
x Schedule
x Computer resource utilization
x Software engineering environment
x Requirements traceability
x Requirements stability
x Design stability
x Complexity
x Breadth of testing
x Fault profiles

Reliability

Table 6–4
Unit integration and testing decision criteria

Primary responsibility Principal products Decision criteria
affected

S/W Developer SDFs Adequate evidence of unit
integration and testing

S/W Developer Requirements Updated
and Gov’t. SQA or Trace(s)
IV&V

Metrics Report(s) Acceptable degrees of: re-
quirements traceability and
stability, computer resource
utilization, design stability,
breadth and depth of test-
ing, fault profiles

Section IV
CSCI Qualification Testing

6–18. General
a. During this activity, the developer prepares and demonstrates

all the test cases necessary to ensure compliance with the CSCI’s
software and interface requirements.

b. If a multiple build software acquisition strategy is in effect,
this activity for a CSCI is not complete until that CSCI’s final build,
or possibly later builds involving items with which the CSCI is
required to interface.

c. Historical equivalent activities are: CSCI Formal Qualification
Test (FQT) - MSCR; SDT cycle/system testing (partial) - AIS.

6–19. Objective
The objective of CSCI qualification testing is to demonstrate to the
acquirer the CSCI’s ability to meet its requirements as specified in
its software and interface requirements specifications.

6–20. Entry criteria
a. The CSCI should successfully complete unit integration and

testing, including developer internal CSCI testing.
b. Test preparation effort, including STD preparation and dry run,

s h o u l d o c c u r p r i o r t o r u n n i n g a f o r m a l t e s t w i t n e s s e d b y t h e
acquirer.

6–21. Test activities
a. The developer establishes test preparations, test cases, test

procedures, and test data for CSCI qualification testing and records
this information in the appropriate STD.

b. Benchmark test files are used as test data, if available.
c. Prior to an acquirer witnessed test, the developer should per-

form a dry run of the test in accordance with the test cases, proce-
d u r e s a n d d a t a i n t h e S T D . T h e r e s u l t s a r e r e c o r d e d i n t h e
a p p r o p r i a t e S D F s a n d t e s t c a s e s o r p r o c e d u r e s a r e u p d a t e d a s
needed.

d. The developer conducts CSCI qualification testing in accord-
ance with the test cases, procedures, and data in the STD.

e. All discrepancies, malfunctions, and errors will be documented
in problem/change reports in accordance with paragraph 2–2 f, and
entered into the developer’s corrective action system.

f. Results of CSCI qualification testing are recorded in a software
test report (STR).

g. Test results are analyzed, software revised and retested at all
necessary levels, and the SDFs and other software products updated
based on the results. The acquirer should be notified in advance
when qualification retesting is to occur.

h. The operating environment for CSCI qualification testing is
usually a local test bed system. However, qualification on target or
production representative system is preferred, particularly for em-
bedded MSCR.

6–22. Evaluation activities
a. Continuous evaluation activities include—
(1) Review of the STD to ensure CSCI qualification test prepara-

tions, test cases, and test procedures are adequate to verify compli-
a n c e w i t h S T P , S R S s a n d i n t e r f a c e r e q u i r e m e n t s s p e c i f i c a t i o n s
(IRSs).

(2) Assessment of test drivers for their ability to induce data and
processing loads stated in the operational mode summary/mission
profile (OMS/MP). See AR 71–9 for details on the OMS/MP.

(3) Ensuring traceability from each STD test case to its CSCI and
software interface requirements and, conversely, from each CSCI
and applicable software interface requirement to the test case(s) that
address it.

b. Implementation and analysis of applicable metrics.
c. If needed to resolve open issues or address areas of risk identi-

fied in the evaluation process, a formal test readiness review is
appropriate.

29DA PAM 73–7 • 25 July 1997

6–23. Metrics
The metrics marked with an x in table 6–5 apply to CSCI qualifica-
tion testing.

Table 6–5
Metrics applicable to CSCI qualification testing

Applies Metric

x Cost
x Schedule
x Computer resource utilization

Software engineering environment
x Requirements traceability
x Requirements stability
x Design stability

Complexity
x Breadth of testing
x Depth of testing
x Fault profiles

Reliability

6–24. Decision criteria
Representative products, documents and decision criteria typically
addressed during CSCI qualification testing are shown in table 6–6.
Items marked “ final” should contain comprehensive material that
corresponds to the current build and level of qualification testing.

Table 6–6
CSCI qualification testing decision criteria

Primary responsibility Principal products Decision criteria
affected

PM & Developer Test readiness Ready to perform CSCI
with SQA and review(s), if qualification test(s)
IV&V required, to

resolve open
issues

S/W Developer STD Draft

Dry run of CSCI qual. test in
accordance with STD

STD Final

STR Final

S/W Developer Requirements Updated
and Gov’t. SQA or Trace(s)
IV&V

Metrics Report(s) Acceptable degrees of: re-
quirements traceability and
stability, computer resource
utilization, design stability,
breadth and depth of test-
ing, fault profiles

Section V
Integration and Testing of Computer Software
Configuration Items and Hardware Configuration Items

6–25. General
a. The developer successively integrates two or more software or

hardware configuration items and tests the composite groupings to
ensure they work together as intended. This process continues until
all configuration items in a system or subsystem have been inte-
grated and tested. CSCI/HWCI integration and testing also applies
to building a system from subsystems.

b. If a multiple build software or system acquisition strategy is in
effect, this activity may not be complete until the final build. CSCI/

HWCI integration and testing for a build means integrating software
and hardware developed in the current build with other CSCI/HWCI
developed in that build and previous builds, and testing the results.

c. Historical equivalent activities are: system integration testing -
MSCR; SDT cycle/system testing (partial)—AIS.

6–26. Objective
The objective of this activity is to produce a system which has
completed developer internal system testing and meets its architec-
tural design requirements.

6–27. Entry criteria
a. The unit integration and testing for a CSCI should have suc-

cessfully completed prior to the CSCI’s integration with other con-
figuration items.

b. If this activity is followed by system qualification testing,
applicable CSCI qualification testing should also have occurred.

6–28. Test activities
a. The developer establishes test cases, test procedures and test

data for conducting CSCI/HWCI integration and testing and records
the information in the appropriate SDFs.

b. Benchmark test files are used as test data.
c. The developer conducts CSCI/HWCI integration testing in ac-

cordance with the test cases, procedures and data in the SDFs.
d. Results of CSCI/HWCI integration testing are recorded in the

SDFs.
e. Test results are analyzed, software revised and retested, and

the SDFs and other software products updated based on the test
results.

f. The operating environment for CSCI/HWCI integration and
testing usually consists of target or production representative hard-
ware. This may be supplemented or substituted with local test bed
hardware only with the acquirer’s approval.

g. With many of the configuration items integrated, limits and
bounds are tested, and multiple paths executed to ensure that inte-
gration is proceeding in a robust manner.

h. Tests addressing run time efficiency and stressing the software
at the limits of its specified requirements are also performed.

i. All discrepancies, malfunctions, and errors should be docu-
mented in problem/change reports in accordance with paragraph 2–2
f.

j . I f s y s t e m q u a l i f i c a t i o n t e s t i n g a p p l i e s t o t h e b u i l d , t h e
developer can document the appropriate qualification test cases in
the STD as part of the system qualification test activity.

6–29. Evaluation activities
a. CSCI/HWCI integration and testing is a developer internal

activity. To gain insight into this process software quality assurance,
IV&V, and V&V personnel generally perform evaluations on-site
and report to the remainder of the software T&E community. SDFs
are reviewed to verify—

(1) Software and hardware is integrated in accordance with the
CSCI/HWCI integration and test approach and procedures identified
in the SDP.

(2) Results and analysis of CSCI/HWCI integration and testing
are recorded in the SDFs.

(3) The developer revises software products, including CSCI/
HWCI integration test cases, procedures and data, based on test
results. The developer also ensures that these revisions continue to
address requirements.

b. The developer performs static analysis, data flow analysis and
c o d e w a l k - t h r o u g h s t o a s s e s s s o f t w a r e m o d u l a r i t y , q u a l i t y , a n d
maintainability.

c. Completed and published system documentation and training
packages are not normally available for CSCI/HWCI integration
testing. However, if such documentation is available, it should also
be reviewed.

d. Implementation and analysis of applicable metrics.

30 DA PAM 73–7 • 25 July 1997

6–30. Metrics
a. The metrics marked with an x in table 6–7 apply to CSCI/

HWCI integration and testing.

Table 6–7
Metrics applicable to CSCI/HWCI integration and testing

Applies Metric

x Cost
x Schedule
x Computer resource utilization

Software engineering environment
x Requirements traceability
x Requirements stability
x Design stability

Complexity
x Breadth of testing

Depth of testing
x Fault profiles

Reliability

b. Breadth of testing becomes more refined in this activity.
c. The design progress component of the design stability metric

should indicate many more units incorporated toward the final sys-
tem or build configuration and that the design is becoming more
stable.

6–31. Decision criteria
Representative products, documents and decision criteria typically
addressed during CSCI/HWCI integration and testing are shown in
table 6–8.

Table 6–8
CSCI/HWCI integration and testing decision criteria

Primary responsibility Principal products Decision criteria
affected

S/W Developer SDFs Adequate evidence of
CSCI/HWCI integration and
testing

S/W Developer Requirements Updated
and Gov’t. SQA or Trace(s)
IV&V

Metrics Report(s) Updated

Acceptable degrees of: re-
quirements traceability and
stability, computer resource
utilization, design stability,
breadth of testing, fault pro-
files

Section VI
System Qualification Testing

6–32. General
a. During this activity, the developer prepares for and demon-

strates the test cases necessary to authenticate compliance with all
applicable system requirements.

b. If a multiple build software or system acquisition strategy is in
effect, this activity is not complete until the final build.

c. Historical equivalent activities are: System Integration Test
(SIT)—MSCR; SDT cycle/system testing (partial)—AIS.

6–33. Objective
The objective of system qualification testing is to demonstrate to the
acquirer the system’s ability to meet its requirements as specified in
its system and interface requirements specifications.

6–34. Entry criteria
a. The system should have successfully completed CSCI/HWCI

integration and testing, including developer internal CSCI/HWCI
testing.

b. Test preparation effort, including STD preparation and dry run,
s h o u l d o c c u r p r i o r t o r u n n i n g a f o r m a l t e s t w i t n e s s e d b y t h e
acquirer.

6–35. Test activities
a. The developer establishes test preparations, test cases, test

procedures, and test data for system qualification testing and records
the information in the appropriate STD.

b. Benchmark test files are used as test data.
c. Prior to an acquirer witnessed test, the developer should per-

form a dry run of the test in accordance with the test cases, proce-
d u r e s a n d d a t a i n t h e S T D . T h e r e s u l t s a r e r e c o r d e d i n t h e
a p p r o p r i a t e S D F s a n d t e s t c a s e s o r p r o c e d u r e s a r e u p d a t e d i f
needed.

d. System qualification testing is conducted by the developer in
accordance with the test cases, procedures, and data in the STD.

e. All discrepancies, malfunctions and errors will be documented
in problem/change reports in accordance with paragraph 2–2 f, and
entered into the developer’s corrective action system.

f. Results of system qualification testing are recorded in an STR.
g. Test results are analyzed, software revised and retested at all

necessary levels, and the SDFs and other software products are
updated based on the results. The acquirer should be notified in
advance when qualification retesting is to occur.

h . T h e o p e r a t i n g e n v i r o n m e n t f o r s y s t e m q u a l i f i c a t i o n t e s t i n g
usually consists of target or production representative hardware.
This may be supplemented or substituted with local test bed hard-
ware only with the acquirer’s approval.

6–36. Evaluation activities
a. Continuous evaluation activities include—
(1) Review of the STD to ensure system qualification test prepa-

rations, test cases, and test procedures are adequate to verify compli-
ance with SSS and applicable IRS requirements.

(2) Assessment of test drivers for their ability to induce data and
processing loads stated in the OMS/MP.

(3) Ensuring traceability from each STD test case to the system
and interface requirements it addresses and conversely from each
system and applicable interface requirement to the test case(s) that
address it.

b. Implementation and analysis of applicable metrics.
c. If needed to resolve open issues or address areas of risk identi-

fied in the evaluation process, a formal test readiness review is
appropriate.

6–37. Metrics
a. The metrics marked with an x in table 6–9 apply to system

qualification testing.

Table 6–9
Metrics applicable to system qualification testing

Applies Metric

x Cost
x Schedule
x Computer resource utilization

Software engineering environment
x Requirements traceability
x Requirements stability
x Design stability

Complexity
x Breadth of testing

Depth of testing
x Fault profiles
x Reliability

b. Breadth of testing becomes more refined in this activity.

31DA PAM 73–7 • 25 July 1997

c. The design progress component of the design stability metric
should indicate more units are being incorporated and that the de-
sign is becoming more stable over time.

d. Actual measurements for system reliability may become avail-
able during this activity.

6–38. Decision criteria
Representative products, documents, and decision criteria typically
addressed during system qualification testing are shown in table
6–10. Items marked “ final” should contain comprehensive material
t h a t c o r r e s p o n d s t o t h e c u r r e n t b u i l d a n d l e v e l o f q u a l i f i c a t i o n
testing.

Table 6–10
System qualification testing decision criteria

Primary responsibility Principal products Decision criteria
affected

PM & Developer Test readiness Ready to perform system
with SQA and review(s), if qualification test
IV&V required, to

resolve open
issues

S/W Developer STD Draft

Dry run of system qual. test
in accordance with STD

STD Final

STR Final

S/W Developer Requirements Updated
and Gov’t. SQA or Trace(s)
IV&V

Metrics Report(s) Acceptable degrees of: re-
quirements traceability and
stability, CRU utilization, de-
sign stability, breadth of tes-
ting, fault profiles

Section VII
System Developmental Testing (DT)

6–39. General
a. The DT described here consists of a series of system level

tests where the Government controls the T&E process. This section
d e s c r i b e s s o f t w a r e T & E c o n s i d e r a t i o n s f o r s y s t e m s c o n t a i n i n g
software.

b. The type and scope of a developmental test depends on the
life-cycle phase in which it occurs, the test objectives or the mile-
stone decision it supports. The procedures in this section should be
tailored accordingly. Additional information regarding participants,
responsibilities, activities, applicable documents and reviews in DT
can be found in AR 73–1 and DA Pam 73–4. This section augments
some software-specific aspects of, but does not replace, DA Pam
73–4.

c. If a multiple build software or system acquisition strategy is in
effect, this activity is not complete until the software’s or system’s
final build.

d. Specific developmental tests for materiel systems are identified
in AR 73–1. The level of detail outlined in this section covers the

comprehensive aspects of DT that supports a certification of readi-
ness decision for dedicated operational test and evaluation. The AIS
SQT is a system DT. In this pamphlet, an AIS SDT is considered a
developer test since it is not managed and performed by Govern-
ment testers. Refer to sections IV, V, and VI of this chapter in
regard to the SDT.

6–40. Objective
The objective of DT is to demonstrate that the system is capable of
meeting all its critical technical parameters as specified in Part I of
the TEMP, to identify technological and design risks, and to deter-
mine readiness to proceed to system operational testing (if applica-
ble). DT focuses on system requirements in order to verify system
technical performance and the ability of the system to perform in
the user environment. Critical to the success of this and future tests
is the ability to drive or load the system software in accordance with
the user’s OMS/MP.

6–41. Entry criteria
The following must have occurred prior to beginning a formal
developmental test—

a. Evidence of successful completion of the developer’s software
and system qualification tests.

b. An approved TEMP exists that has been updated to reflect the
developmental test.

c. The software baseline for test has been identified with name
and version identifiers and has been QA certified.

d. A safety assessment report (SAR) has been provided to the test
organization. When developmental testing involves troops, a safety
release must have been issued to the test organization by the appro-
priate release authority (see AR 73–1, AR 385–16 and DA Pam
73–4).

e. A DTRR has been held and the developmental test readiness
statement indicates the testing may proceed.

f. Problems detected during previous testing which will have im-
pact on a successful developmental test have been closed, or ap-
proval to waive or defer tests for those conditions has been received
from the TEMP approval authority after coordination through the
test IPT.

g. System documentation regarding software operation is in near
final form. This includes computer operation and users manuals,
conversion documentation, and training materials.

6–42. Test activities
a. For evaluated systems, a system evaluation plan (SEP) and

event design plan (EDP) are prepared by the independent evaluator/
tester.

b. The developmental tester prepares a DTP to execute the EDP.
Figure 6–1 summarizes an approach for addressing software require-
ments in the context of DT. Figure 6–2 provides additional detail for
test case development and subsequent evaluation. The DTP should
address means of collecting and reporting data for system and soft-
ware reliability, depth and breadth of testing, and fault profiles
metrics.

c. The developmental tester coordinates all activities with the PM
and provides guidance on the resources required to support testing.

d. The PM convenes a DTRR, prepares a DTRS, and submits it
to the developmental tester. Figure 6–3 is a checklist of software
related questions discussed at the DTRR.

32 DA PAM 73–7 • 25 July 1997

Figure 6-1. Software/system generic DT issues

33DA PAM 73–7 • 25 July 1997

Figure 6-2. Sample software issues and evaluation criteria

34 DA PAM 73–7 • 25 July 1997

Figure 6-3. DTRR software T&E checklist

35DA PAM 73–7 • 25 July 1997

e. Test data consists of live data files (when they exist) supple-
mented with user prepared data. Test data should be representative
of typical and peak load operational conditions. When required,
additional files to test high risk performance parameters should be
included.

f. DT is conducted by the developmental tester. An ad hoc group
of system users or operators may also participate based on test
design.

g. DT is performed on target hardware.
h. Problems discovered during DT are recorded as system/soft-

ware anomalies using the TIR. The report has a developer’s analysis
section used for corrective action reporting. All software problems
including problems with test procedures will be recorded in accord-
ance with paragraph 2–2 f.

i. The tester prepares a developmental test report describing the
results of test execution and data collection efforts. The report is
submitted to the PM, independent evaluators and appropriate review
body (ASARC, in-process review (IPR) or MAISRC).

j. The independent evaluator prepares a system evaluation report
(SER) or system assessment (SA) and submits it to the PM and
appropriate review body.

k. Following the test, results are analyzed, software revised if
necessary and retested, and the SDFs and other software products
updated based on the test results.

l. During the DT, the QA certified software baseline should not
be modified for use in the DT without prior approval of the PM and
independent evaluators.

6–43. Evaluation activities
a. Results of testing are prioritized and categorized by a Govern-

ment data authentication group. Principal members are the PM, user
representative, evaluator, and developmental tester.

b. Test results are evaluated by the evaluator in accordance with
the SEP.

c. Evaluation is a comprehensive V&V process conducted to
ensure that all capabilities and requirements of the system are exer-
cised and analyzed in accordance with the issues and criteria stated
in the SEP and TEMP. Elements of the evaluation may include but
are not limited to the six generic test issues of figure 6–1: software
performance, interoperability, usability, maintainability, safety, and
security. Sample subissues and evaluation criteria for each issue are
shown in figure 6–2.

d. The evaluation should include discussion of relevant software
metrics and any outstanding software problems. For example, soft-
ware faults discovered and closed, test adequacy, and failure pat-
terns over the DT period should be addressed.

6–44. Metrics
a. The metrics marked with an x in table 6–11 apply to system

developmental testing.

Table 6–11
Metrics applicable to system developmental testing

Applies Metric

x Cost
x Schedule
x Computer resource utilization
x Software engineering environment
x Requirements traceability
x Requirements stability
x Design stability
x Complexity
x Breadth of testing
x Depth of testing
x Fault profiles
x Reliability

b. Data from any of the metrics may be used to assist in deter-
mining readiness for developmental test.

c. Breadth and depth of testing, reliability, and fault profiles
collected during the developmental test are of particular interest.

d. The traceability and stability metrics, complexity and CRU
contribute towards the maintainability evaluation.

e. An examination of fault profiles for the period prior to DT
shows the ability of the developer to identify and correct software
problems. This examination also provides an indication of software
maintainability.

f . T h e S E E m e t r i c m a y a l s o p r o v i d e i n s i g h t r e g a r d i n g t h e
developer’s ability to maintain the software.

6–45. Decision criteria
Representative products, documents, and decision criteria typically
addressed during system developmental testing are shown in table
6–12.

Table 6–12
System developmental testing decision criteria

Primary responsibility Principal products Decision criteria
affected

PM DTRR, DTRS Ready to perform DT

PM and Gov’t. Executable S/W S/W baseline for DT
SCM

Developmental Test Report Final
Tester

Evaluator SA Final

LCSEC/PDSS Maintainability Draft
agent evaluation

Gov’t. SQA or Requirements Updated
IV&V Trace(s)

Metrics Report(s) Acceptable degrees of: re-
quirements traceability and
stability, computer resource
utilization, design stability,
breadth and depth of test-
ing, fault profiles, reliability

6–46. Other considerations
a. Preferably, there should be no open priority 1 or 2 problem/

change reports or TIRs from previous testing prior to initiating DT.
Severe test limitations may result if testing occurs with open prob-
lem reports. It may cause great portions of DT to be repeated due to
invalid data.

b. Ideally, the software baseline used in training for the formal
test should not be changed prior to the start of test. This reduces the
risk of changes to RAM instrumentation, changes to data collection
and reduction procedures, or that test participant retraining is neces-
sary shortly before starting formal test.

c. The software baseline is not modified during DT unless severe
problems are encountered, in order to maintain consistency of data
collected throughout the test.

d. If the number of priority 1, 2, or 3 problems detected during
DT become excessive, impacting the test objectives, the develop-
mental tester can suspend or terminate testing in accordance with
the policy stated in AR 73–1.

e. If the software baseline is modified during the test period,
regression testing is required to ensure detected problems were cor-
r e c t e d a n d a d d i t i o n a l p r o b l e m s w e r e n o t i n t r o d u c e d i n t o t h e
software.

f. It is very important to test interoperability (both intrasystem
a n d i n t e r s y s t e m) u s i n g a c t u a l t a r g e t s y s t e m s . T h e A r m y I n t e r -
operability Network (AIN) and the Digital Integration Laboratory

36 DA PAM 73–7 • 25 July 1997

(DIL) at Fort Monmouth, New Jersey, and Joint Integrated Test
Center (JITC) at Fort Huachuca, Arizona, are available for this
purpose.

g. Post-deployment software support (PDSS) personnel should
conduct the software maintainability evaluation.

Section VIII
System Operational Testing

6–47. General
a. Operational tests are system level tests where the Government

controls the T&E process. This section describes software test and
evaluation considerations for systems containing software. OT dif-
fers from DT in that OT—

(1) Is conducted on systems in an operational environment that is
as realistic as practical.

(2) Employs personnel with the same skills and training as those
who will operate, maintain and support the system when it is de-
ployed, such as typical troops or user organizations.

b. The type and scope of an operational test depends on the life-
cycle phase in which it occurs, the test objectives or the milestone
decision it supports. The procedures in this section should be tai-
lored accordingly. Additional information regarding participants, re-
sponsibilities, activities, applicable documents and reviews in OT
can be found in AR 73–1 and DA Pam 73–5. This section augments
some software-specific aspects of, but does not replace, DA Pam
73–5.

c. If a multiple build software or system acquisition strategy is in
effect, this activity is not complete until the software’s or system’s
final build.

d. This chapter outlines the comprehensive aspects of an IOT.
When an accelerated software development acquisition strategy is
used, the full level of detail described in this section applies to the
IOT of the representative sample for fielding certification, IOT.C.
Not all aspects of this section apply equally to the incremental
software block IOTs that precede or follow the IOT.C, as they are
dependent on the functionality of each block. See DA Pam 73–5 for
detail.

6–48. Objective
The objective of this activity is to demonstrate that the system is
capable of meeting its operational issues and criteria as specified in
Part IV of the TEMP. OT focuses on how the system supports the
user’s mission, and the capability of the user to employ the system,
often termed the system’s operational effectiveness and suitability.

6–49. Entry criteria
The following must have occurred prior to beginning a formal
operational test:

a. Evidence of successful completion of DT.
b. An approved TEMP exists that has been updated to reflect the

operational test.
c. The software baseline for test has been identified with name

and version identifiers and has been QA certified.
d. A safety release has been issued to the test organization by the

appropriate release authority.
e. An OT pilot test has occurred and any deficiencies found in

the DTP have been corrected.
f. One or more operational test readiness reviews (OTRRs) has

been held and operational test readiness statements (OTRSs) in each
review member’s area of responsibility indicate the testing may
proceed.

g. Problems detected during previous testing which will have
impact on a successful operational test have been closed, or ap-
proval to waive or defer tests for those conditions has been received

from the operational tester, operational evaluator, and TEMP ap-
proval authority after coordination through the test IPT.

h. System documentation regarding software operation is in final
form. This includes computer operation and users manuals, conver-
sion documentation, and training materials.

6–50. Test activities
a. For evaluated systems, a SEP is prepared jointly by the opera-

tional tester and evaluator.
b. The operational tester prepares an outline test plan (OTP)

identifying all resources necessary to carry out the test.
c. The operational tester prepares a DTP to execute the SEP.

Figure 6–4 summarizes an approach for addressing software require-
ments in the context of OT. Figure 6–2 provides additional detail for
test case development and subsequent evaluation. The DTP should
address providing TIRs to the PM to collect and report data for
system and software reliability, breadth of testing, and fault profiles
metrics.

d. The operational tester conducts an OTRR to identify any prob-
lems that may impact starting or adequately executing the opera-
tional test. The items outlined in figure 6–5 are appropriate OTRR
discussion points regarding requirements software must meet to per-
mit certification of readiness for dedicated operational testing.

e. A production database or equivalent is used as test data.
f. OT is conducted by the independent operational tester.
g. OT is performed on target hardware in the production repre-

sentative system configuration. This includes requisite communica-
tions facilities, peripherals, and interfaces to other systems.

h. Problems discovered during OT are recorded as system/soft-
ware anomalies using TIRs. All software problems, including prob-
lems with test procedures, will be recorded in accordance with
paragraph 2–2 e.

i. The operational tester and evaluator prepare a system evalua-
tion report (SER) assessing the results of the operational test. The
independent evaluator evaluates the system’s effectiveness, suitabili-
ty, and survivability with respect to the critical operational issues
and criteria. The report is submitted to the appropriate milestone
decision review body.

j. Test results are analyzed, software revised if necessary and
retested, and the SDFs and other software products updated based
on the results.

k. Changes to the QA certified software or firmware baseline
must not be implemented during the OT unless specifically ac-
knowledged and concurrence received from the responsible opera-
tional test and evaluation agency. The software baseline is not
modified during OT unless severe problems are encountered, in
order to maintain consistency of data collected throughout the test.
The commander of OPTEC, or MEDCOM in the case of medical
materiel, must approve changes to the baseline.

6–51. Evaluation activities
a. The data from OT are reviewed and authenticated by a Gov-

ernment data authentication group. Principal members are the PM,
user representative, independent evaluator, and operational tester.

b. Test results are evaluated by the independent evaluator in
accordance with the SEP. If the system is found to be operationally
effective and suitable, the T&E findings support a production deci-
sion or software fielding.

c. A completed software maintainability evaluation should be
used as part of the system’s suitability determination.

37DA PAM 73–7 • 25 July 1997

Figure 6-4. Software/system generic OT issues

38 DA PAM 73–7 • 25 July 1997

Figure 6-5. OTRR software T&E checklist

39DA PAM 73–7 • 25 July 1997

d. Operational evaluation verifies and validates that typical user
missions can be met by the system under test when operated in the
deployed environment using typical personnel. System and software
functions are exercised and analyzed in accordance with the COIC
stated in the operational SEP and TEMP. Elements of the opera-
tional evaluation regarding software may include but are not limited
to the six generic test issues of figure 6–4: software performance,
interoperability, usability, maintainability, safety, and security.

e. The evaluation should include discussion of relevant software
metrics and any other outstanding software problems. For example,
software faults discovered, test adequacy, and reliability over the
OT period should be addressed.

f. If the operational test is supporting a decision to release the
software to users, the software fielding activity and its decision
criteria should be used in the evaluation. See chapter 7 for the
description of the software fielding activity.

6–52. Metrics
a. The metrics marked with an x in table 6–13 apply to system

operational testing:

Table 6–13
Metrics applicable to operational testing

Applies Metric

x Cost
x Schedule
x Computer resource utilization
x Software engineering environment
x Requirements traceability
x Requirements stability
x Design stability
x Complexity
x Breadth of testing
x Depth of testing
x Fault profiles
x Reliability

b. Data from any of the metrics may be used to assist in deter-
mining readiness for operational test.

c. Breadth of testing, reliability, and fault profiles collected dur-
ing the operational test are of particular interest.

6–53. Decision criteria
Representative products, documents, and decision criteria typically
a d d r e s s e d d u r i n g s y s t e m o p e r a t i o n a l t e s t i n g a r e s h o w n i n t a b l e
6–14.

6–54. Other considerations
a. In an accelerated development/fielding acquisition strategy, a

limited user test is often conducted to prove out the operational test
bed. This test bed is comprised of the target hardware and NDI
software, such as commercial operating systems, database manage-
ment systems, etc., that form the basis of the operational system.
Application software is not usually tested at this time. As each
application software block is developed, it undergoes an initial oper-
ational test on the test bed.

b. Integrated developmental and operational testing is encouraged
if the independence of evaluations is retained and the integrity of
results is not compromised. Integrated DT/OT is conducted simul-
taneously using the same hardware and software, occasionally with
dedicated phases of DT and OT.

c. If OT is required to support PDSS, then a FOT is conducted
by the operational tester. Otherwise, a user acceptance test is con-
ducted by the FP or CBTDEV. For systems that have both a FP and
a CBTDEV, the UAT is conducted by the FP. A UAT is limited in
scope relative to an FOT with the primary purpose of verifying the
f u n c t i o n a l i t y o f c h a n g e s t o a n i n f o r m a t i o n s y s t e m i n t h e u s e r
environment.

d. A supplemental site test (SST) may be necessary for informa-
tion systems that execute in multiple hardware and operating system
environments if there are differences between user locations that
could affect performance or suitability. The SST supplements an
IOT or UAT. The SST and UAT will not be used in lieu of an IOT
to meet the requirements of DODD 5000.1 and AR 73–1.

Table 6–14
Operational testing decision criteria

Primary responsibility Principal products Decision criteria
affected

PM and Gov’t. Executable S/W S/W baseline for OT
SCM

Operational Tester OTRR, OTRS Readiness to conduct OT

Operational Tester, SA Final
Independent
Evaluator

LCSEC/PDSS Maintainability Final
agent evaluation

Gov’t. SQA or Requirements Updated
IV&V Trace(s)

Metrics Report(s) Acceptable degrees of: re-
quirements traceability and
stability; CRU utilization; de-
sign stability; breadth and
depth of testing; fault pro-
files, reliability

e . T h e r e s h o u l d b e n o o p e n p r i o r i t y 1 o r 2 p r o b l e m / c h a n g e
reports or TIRs from previous testing prior to initiating OT. Severe
test limitations may result if testing occurs with open problem
reports. It may cause great portions of the OT to be repeated due to
invalid data.

f. Ideally, the software baseline used in training for the formal
test should not be changed prior to the start of test. This reduces the
risk of changes to RAM instrumentation, changes to data collection
and reduction procedures, or that test participant retraining is neces-
sary shortly before starting formal test.

g. The software baseline is not modified during OT unless severe
problems are encountered, in order to maintain consistency of data
collected throughout the test.

h. If the software baseline is modified during the test period,
regression testing is required to ensure detected problems were cor-
r e c t e d a n d a d d i t i o n a l p r o b l e m s w e r e n o t i n t r o d u c e d i n t o t h e
software.

i. If the number of priority 1, 2, or 3 problems detected during
OT become excessive, impacting the test objectives, the operational
tester can suspend or terminate testing in accordance with the policy
stated in AR 73–1.

Chapter 7
Activities Related to Fielding

Section I
General

7–1. Purpose
This chapter summarizes activities related to fielding software-inten-
sive systems and transferring maintenance responsibility from the
developer to a life cycle support agent. Opportunities and proce-
dures to enhance the process through CE are identified.

40 DA PAM 73–7 • 25 July 1997

7–2. Scope
a. The sections in this chapter parallel the activities of the con-

solidated software standards in paragraph 2–2 d but have been
expanded to include considerations beyond those of the developer.
The events described here span preparing the executable software
and operating instructions for distribution through transferring the
software product baseline to a maintenance agent for PDSS. The
activities “ preparing for software use” and “ preparing for software
transition” have been renamed “ software fielding” and “ software
transition” to indicate their expanded scope.

b. The applicability of an activity to any given program and the
depth to which it is carried out is dependent on overall system
factors such as acquisition strategy and level of technical risk.

c. It is unlikely that many systems need all the manuals identified
in this section. Substitution of commercial or other off-the-shelf
documentation that adequately meets the intent of these manuals is
encouraged.

d. As specified by the acquirer, this section also applies to train-
ing devices, automatic test equipment or other logistics support tools
needed for the system. Installation and operating instructions as well
as software maintenance information for these devices must also be
passed to the life-cycle agent.

e. In embedded MSCR or logistics support equipment, informa-
tion about installing and operating software is often incorporated
into technical and field maintenance manuals. In that case, the
software fielding activity includes developing or participating in
documenting the appropriate sections of those manuals and associ-
ated training materials.

f. Elements of the DT, OT, software fielding, and software transi-
tion activities contribute to the materiel release decision.

7–3. Objective
The objective of activities related to fielding is to prepare and put in
place the system’s software logistics support environment. This in-
cludes replicating and disseminating software and operating instruc-
t i o n s t o u s e r s , t r a i n i n g u s e r s a n d m a i n t e n a n c e p e r s o n n e l , a n d
establishing the environment necessary to repair and upgrade the
software.

Section II
Software Fielding

7–4. General
a. The developer prepares the products discussed in this section,

unless otherwise specified by the acquirer.
b. If a multiple build software acquisition strategy is in effect,

planning should identify what software, if any, is to be fielded to
users for each build. Software fielding for a build means those
actions necessary to carry out the fielding plans for that build.

7–5. Objective
The objective of software fielding is to make the executable soft-
ware available to users and deliver the manuals and instruction
necessary to operate the software. Executable software includes any
data files necessary to install and run the deployed software on
target hardware, such as batch files and router tables.

7–6. Entry criteria
a. An approved software installation plan (SIP) or equivalent

should exist to guide the installation process.
b. The software to be issued should show evidence of successful

testing at all appropriate levels, must be accepted by the MATDEV/
FP and user, and must have been certified by QA.

c. If materiel release provisions apply to the system, a request for
release must be approved prior to actual field use. Paragraph 7–11,
AR 700–142 and DA Pam 700–142 provide more detail on these
requirements.

7–7. Test activities
Extensive testing is not inherent in preparing software packages for

distribution. The products developed here are tested in other activi-
ties. Some check out is done during site installation.

7–8. Evaluation activities
Users and LCSEC/PDSS personnel should be heavily involved in
continuous evaluation during this activity to—

a. Review the SIP to verify—
(1) Installation task descriptions identify the organization that

will accomplish the task, such as user, developer, computer opera-
tions, PDSS personnel; the quantity of personnel, required skill
levels, and installation schedule.

(2) Provisions for scheduling personnel that will comprise the
installation team, students for training, computer support and techni-
cal assistance; and arrangements needed for facilities, lodging, and
transportation, if required.

(3) Procedures are adequate and complete for—
(a) Installing the software.
(b) Checking out the installed software.
(c) Initializing databases or other software with site-specific data.
(d) Converting data from the current system.
(e) Performing a dry run of the procedures in operator and user

manuals.
b. Review the software version description (SVD) to verify that

the exact version of software prepared for each user site is identi-
fied. The SVD should provide—

(1) A n i n v e n t o r y o f m a t e r i a l s c o m p r i s i n g t h e v e r s i o n (t a p e s ,
disks, documentation, listings, etc.) along with applicable handling
and security instructions or duplication and license restrictions.

(2) Explicit identification of all computer files making up the
version.

(3) A list of all changes incorporated into the version since the
previous version.

(4) Identification of any site unique data.
(5) I n s t a l l a t i o n i n s t r u c t i o n s a n d p r o c e d u r e s f o r d e t e r m i n i n g

whether the version has been installed properly.
(6) Information on possible problems and known errors in the

version. Instructions for recognizing, correcting or avoiding these
problems should be included.

c. Review technical, maintenance or other operations manuals
providing instructions for users who—

(1) Both operate and make use of the software’s results, as in a
software user manual (SUM).

(2) Prepare inputs to and receive outputs from the software but
depend on others to operate the software in a computer center or
other centralized or networked software installation, as in a software
input/output manual (SIOM).

(3) Operate the software in a computer center or other centralized
or networked software installation so that it can be used by others,
as in a software center operator manual (SCOM).

(4) Operate the computers on which the software will run, as in a
computer operation manual (COM).

d. Assess the manuals to determine their usability, correctness,
and completeness in imparting the procedures necessary to—

(1) Set up the requisite hardware and software environment for
use, including communications equipment.

(2) Operate and interpret results from diagnostic features.
(3) Perform mission tasks or computer runs in different operating

modes, such as training, restart, emergency conditions, degraded
modes, communications failures, manual override, shutdown or typi-
cal conditions.

(4) Identify, document and report problems or malfunctions.
(5) Recover from, work around or avoid malfunctions.
(6) Ensure continuity of operations.
e . A s s u r e t h a t s u i t a b l e u s e r t r a i n i n g a n d s u p p o r t t r a i n i n g i s

planned.
f. Ensure that installation occurs in accordance with the SIP.
g. Implementation and analysis of applicable metrics.

7–9. Metrics
The metrics marked with an x in table 7–1 apply to preparing for
software use. Accounting for the cost of performing this activity and

41DA PAM 73–7 • 25 July 1997

tracking a schedule of events, such as site installations and media
preparation and distribution, are the only metrics associated with
this activity.

Table 7–1
Metrics applicable to software fielding

Applies Metric

x Cost
x Schedule

Computer resource utilization
Software engineering environment
Requirements traceability
Requirements stability
Design stability
Complexity
Breadth of testing
Depth of testing
Fault profiles
Reliability

7–10. Decision criteria
Representative products, documents and decision criteria that typi-
cally should be met during preparation for software use are shown
in table 7–2. Items marked “ final” should contain comprehensive
material that corresponds to the current build or release.

7–11. Other considerations
a. The materiel release process assures that Army materiel is

suitable and supportable before the MATDEV may transfer account-
ability and control of the materiel to users. Systems containing
software follow this process. Materiel release actions in support of
new procurement, reprocurement, and system changes must also be
supported by assessments or evaluations conducted by the independ-
ent developmental and operational evaluators. A software suppor-
tability statement is included in the materiel release package.

b. The following subparagraphs address software changes that
fall under AR 70–142 materiel release provisions (whether embed-
ded, proprietary or nondevelopment software). Adding, modifying
or removing software is considered a change.

(1) Software that may significantly change the system’s—
(a) Mission function.
(b) Mission capability.
(c) Performance parameters.
(d) Interoperability requirements.
(e) Software architecture.
(f) Maintainability.
(g) Reliability.
(h) Safety.
(2) A block update consisting of software changes of more than

30 percent source lines of code (SLOC), or 30 percent cumulative
SLOC changes since the previous materiel release approval.

(3) A block update consisting of a software translation of 30
p e r c e n t e q u i v a l e n t S L O C t o a d i f f e r e n t c o m p u t e r p r o g r a m m i n g
language.

(4) Software that is significantly changed to run on a different
computer processor or different computer system configuration.

(5) Software changes that require new test equipment for the user
or impact 25 percent or more of the training program of instruction.

Table 7–2
Software fielding decision criteria

Primary responsibility Principal products Decision criteria
affected

S/W Developer Executable S/W Final
files 1

Table 7–2
Software fielding decision criteria—Continued

Primary responsibility Principal products Decision criteria
affected

SPS (exec. S/W Draft
section)

SVD Final (if applicable)

SUM Final (if applicable)

SIOM Final (if applicable)

SCOM Final (if applicable)

COM Final (if applicable)

Applicable informa-
tion for tech.,
maint. or training
manuals

S/W Developer Metrics Report(s) Updates for cost and sched-
and PM ule

MATDEV, Materiel Material Release Approved by applicable de-
Release Review cision authority
Board (MRRB)

Notes:
1 As identified in the executable software section of the SPS.

Section III
Software Transition

7–12. General
a. The developer prepares the products discussed in this section,

unless otherwise noted.
b. If a multiple build software acquisition strategy is in effect,

planning should identify what software, if any, is to be transitioned
to the support agency for each build. Software transition for a build
means those actions necessary to carry out the transition plans for
that build.

7–13. Objective
a. This activity’s objective is delivery of all end item executable

software, associated source files, computer program support manuals
and instruction necessary for the support agent to—

(1) O p e r a t e t h e d e p l o y e d e x e c u t a b l e s o f t w a r e o n i t s t a r g e t
hardware.

(2) Regenerate the executable software.
b. Executable software includes any data files necessary to install

and run the deployed software on target hardware, such as batch
files and router tables. Source files, as used here, also include any
ancillary data files essential to re-creating executable software from
source materials.

7–14. Entry criteria
a. An approved STrP should exist to guide the developer’s transi-

tion process.
b . A n u p d a t e d C R L C M P s h o u l d e x i s t t o g u i d e t h e s u p p o r t

agent’s transition process. Elements of the STrP may be incorpo-
rated into the CRLCMP by reference to reduce duplication.

c. Physical and functional configuration audits of software prod-
ucts to be delivered should occur prior to the completion of this
activity for each build.

7–15. Test activities
Extensive testing of target software is not inherent in preparing
software materials for transition. However, the developer should
demonstrate to the acquirer that the deliverable software can be

42 DA PAM 73–7 • 25 July 1997

regenerated (for example, compiled, linked, loaded, into an ex-
ecutable product) and maintained using the hardware, software, and
facilities identified in the STrP. Some check out is done as part of
the support site installation process.

7–16. Evaluation activities
a. A software maintainability evaluation with subsequent suppor-

tability statement is required for materiel release. This is prepared
by the LCSEC/PDSS agent.

b. LCSEC/PDSS personnel should be heavily involved in contin-
uous evaluation during this activity to—

(1) Review the STrP to verify that all resources needed to con-
trol, copy, and distribute the software and its documentation, and to
specify, design, implement, document, test, evaluate, control, copy,
and distribute modifications to the software are identified and de-
scribed. Resource descriptions include—

(a) F a c i l i t i e s (b u i l d i n g s , r o o m s , p o w e r , s a f e t y , s e c u r i t y
provisions).

(b) Hardware (models, versions, configurations, manuals, source
of supply, licensing provisions).

(c) Software (names, version numbers, release numbers, configu-
rations, manuals, vendor support, data rights).

(2) Ensure the STrP provides a schedule for transition activities,
addresses training, and identifies number, type, skills levels, and
security clearances required for support personnel.

(3) Assure that the SSDD reflects the “ as built” system.
(4) Assure that the software product specification (SPS) is com-

plete and up to date.
(5) Review the SVD to verify that the exact version of software

prepared for the support site and each user site is identified. The
SVD should provide—

(a) A n i n v e n t o r y o f m a t e r i a l s c o m p r i s i n g t h e v e r s i o n (t a p e s ,
disks, documentation, listings, etc.) along with applicable handling
and security instructions or duplication and license restrictions.

(b) Explicit identification of all computer files making up the
version.

(c) A list of all changes incorporated into the version since the
previous version.

(d) Identification of any site unique data.
(e) I n s t a l l a t i o n i n s t r u c t i o n s a n d p r o c e d u r e s f o r d e t e r m i n i n g

whether the version has been installed properly.
(f) Information on possible problems and known errors in the

version. Instructions for recognizing, correcting or avoiding these
problems should be included.

(6) Review software maintenance manuals providing instructions
for support personnel who—

(a) Program the computers on which the software was developed
or on which it will run, as in a computer programming manual.

(b) Program or reprogram firmware devices in which the soft-
ware will be installed, as in a firmware support manual.

(7) As it applies to each support task, assess the manuals to
determine their usability, correctness and completeness in imparting
the procedures necessary to—

(a) S e t u p t h e r e q u i s i t e h a r d w a r e a n d s o f t w a r e p r o g r a m m i n g
environment.

(b) Operate and interpret results from diagnostic features.
(c) Describe the physical characteristics of the support equipment

or target hardware, as applicable, that must be known to perform
programming tasks. Examples are word lengths, interrupt capabili-
ties, hardware operating modes, memory attributes, timers, clocks,
input/output characteristics, sequencing requirements, and special
features.

(d) Install, replace or repair firmware devices including contin-
gencies to preserve continuity of operations when deployed.

(e) Ensure classification security is safeguarded.
(f) Identify, document, and report problems or malfunctions.
(g) Recover from, work around or avoid malfunctions.
(8) Assure that suitable support personnel training is planned, if

applicable.

(9) Assure that a physical configuration audit occurs prior to
acceptance of transitioning material identified in the SPS.

(10) Implementation and analysis of applicable metrics.

7–17. Metrics
The metrics marked with an x in table 7–3 apply to software transi-
tion. In addition to cost and schedule reporting, an assessment of
software maintenance capability may be appropriate for organic or
contracted support organizations whose comparable prior experience
is limited.

Table 7–3
Metrics applicable to software transition

Applies Metric

x Cost
x Schedule

Computer resource utilization
x Software engineering environment

Requirements traceability
Requirements stability
Design stability
Complexity
Breadth of testing
Depth of testing
Fault profiles
Reliability

7–18. Decision criteria
Representative products, documents, and decision criteria that typi-
cally should be met during preparation for software transition are
shown in table 7–4. Items marked “ final” should contain compre-
hensive material that corresponds to the current build.

Table 7–4
Software transition decision criteria

Primary responsibility Principal products Decision criteria
affected

S/W Developer Executable S/W Final
and Gov’t. SCM files

Source files Final

SPS Final

SVD Final

SSDD Final (“ as built” configura-
tion

CPM Final (if applicable)

FSM Final (if applicable)

S/W Developer Functional configu- Final
and PM, Gov’t. ration audit (FCA)
SQA and Gov’t. and physical con-
SCM figuration audit

(PCA)

Metrics Report(s) Updates for cost and sched-
ule; SEE if maint. capability
unproven

43DA PAM 73–7 • 25 July 1997

Chapter 8
Ancillary Activities

8–1. Purpose
This chapter briefly describes activities integral to software develop-
ment and maintenance that support the activities in chapters 5–7.
The ancillary activities of this chapter provide many opportunities
for obtaining CE information.

8–2. Scope
a. Activities in this chapter parallel the activities of the consoli-

dated software standards of paragraph 2–2 d, but have been ex-
panded to include considerations beyond those of the developer. The
material covers major disciplines and events that facilitate other
software activities to proceed effectively and efficiently.

b. The applicability of an activity to any given program and the
depth to which it is carried out is dependent on overall system
factors such as acquisition strategy and level of technical risk.

c. If a multiple build system or software acquisition strategy is in
effect, the following activities should address the context and objec-
tives appropriate for each build.

d. Each of the following activities need not be completely dis-
tinct from the others as long as appropriate independence criteria
among them are maintained. For example, the quality assurance
activity could perform all software product evaluations on a project.

e. Many of these activities are carried out at different levels by
both acquirer (or acquirer’s designee) and developer as tasks inter-
nal to their organization. Each organization operates under its own
set of standard procedures and plans. For example, prior to delivery,
the developer usually manages software source code files with inter-
nal CM procedures referenced in the SDP. When a product baseline
is delivered and routine maintenance is transferred to a LCSEC/
PDSS agent, the applicable procedures are typically documented in
a CRLCMP or SCMP.

f . V i r t u a l l y a l l t h e f o l l o w i n g a c t i v i t i e s a r e g o v e r n e d b y t h e
developer’s SDP, or other plans incorporated to the SDP by refer-
ence, such as CM or QA plans. It is essential that the SDP be
adequate to effectively guide those activities.

g. Other activities may be added to those identified in this chap-
ter at the discretion of the PM and developer to address program
specific areas of concern. Examples are risk management, sub-
contractor management, and interfacing with IV&V agents, other
developers or working groups.

8–3. Objective
The objective of these ancillary activities is to ensure that the efforts
and products of software development are controlled, consistent, and
responsive to requirements.

8–4. Software configuration management
a. Effective CM is essential to support all other development

activities. CM is composed of four basic elements: configuration
identification, configuration control, configuration status accounting,
and configuration audits.

b. Software configuration identification specifies all software re-
lated items to be placed under configuration control (for example,
hardware, software, documentation, files, electronic media) and the
scheme by which each item will be uniquely identified. The identifi-
cation scheme must include the version, revision or release status of
the item.

c. A baseline is a specific set of configuration items and their
associated identifications that are under configuration control. Mili-
tary Standard 973 defines the type of documentation that represent
functional, allocated, and product baselines.

d. Configuration control is the systematic procedure by which
changes to baselined CSCIs and HWCIs are proposed, justified,
evaluated, coordinated, approved or disapproved, and implemented.
T h i s p r o c e d u r e i s c a r r i e d o u t b y a c o n f i g u r a t i o n c o n t r o l b o a r d
(CCB). CCB members, their level of authority to approve changes,
and the steps to be followed to request authorization for changes,

p r o c e s s c h a n g e r e q u e s t s , t r a c k c h a n g e s , d i s t r i b u t e c h a n g e s , a n d
maintain past versions must be documented in the developer’s SDP
or CM plan. There may be several CCBs for a system such as the
software developer’s CCB, the Government subsystem CCB and
Government system CCB. Distribution of changes may also include
recovery of previously issued items, as required.

e. Configuration status accounting is the recording and reporting
of information to manage configuration items which are under con-
figuration control. This includes a record of the—

(1) A p p r o v e d c o n f i g u r a t i o n d o c u m e n t a t i o n a n d i d e n t i f i c a t i o n
markings.

(2) Status of proposed changes, deviation and waivers to the
CSCI/HWCI (both engineering change proposals-software (ECP–Ss)
and problem/change reports).

(3) The implementation status of approved changes.
(4) Changes made to an item since being placed under configura-

tion control.
f. Configuration audits are formal examinations of one or more

CSCIs/HWCIs to verify that the item under configuration control
achieves the requirements allocated to it and that the technical
documentation representing the item matches the physical imple-
mentation of the item. These are functional and physical configura-
t i o n a u d i t s (F C A , P C A) , r e s p e c t i v e l y . F u n c t i o n a l c o n f i g u r a t i o n
audits and PCAs are typically conducted prior to acquirer accept-
ance of the product or “ as-built” baseline.

g. DA Form 5005–R (Engineering Change Proposal—Software
(ECP–S)), is recommended for requesting changes to baselined soft-
ware. DA Form 5005–R is prescribed in AR 25–3. Guidance on
using the form can be found in DA Pam 25–6.

h. The software developer is required to participate in all four
elements of CM.

i. See MIL-STD–973 and DA Pam 25–6 for more detail on
software CM.

j. The duration of this activity is the life time of the system.
k. The requirements stability and design stability metrics make

use of information from configuration status accounting records.

8–5. Software product evaluation
a. Software product evaluations assess the quality of products

built by the software development process. The developer is ex-
pected to perform on-going evaluations as products evolve and a
final evaluation of each deliverable software product prior to its
delivery.

b. Individuals evaluating a software product must be independent
from the individuals that developed it.

c. The consolidated software standards of paragraph 2–2 d iden-
tify criteria and definitions for assessing a product’s completeness,
accuracy, understandability, consistency, compliance to contractual
requirements, and additional factors, as appropriate for each product
when performing the test and evaluation activities in chapters 5–7.

d . P r o b l e m s d e t e c t e d a r e e n t e r e d i n t o t h e c o r r e c t i v e a c t i o n
system.

e. Software product evaluation records are prepared and main-
tained to document the evaluations and their results.

f. The duration of this activity is the life time of the system.
g. Significant CE information can be gained from product evalua-

tion records and from the T&E activities in chapters 5–7. This
information should be made available to members of the appropriate
WIPTs.

8–6. Software quality assurance
a. The software quality assurance activity monitors all software

development activities and their products to ascertain compliance
with procedural and acquirer imposed requirements. The latter are
u s u a l l y c o n t r a c t u a l r e q u i r e m e n t s i n c l u d i n g s t a n d a r d s i n v o k e d
t h r o u g h t h e c o n t r a c t , w h i l e t h e f o r m e r a r e p r e s c r i b e d i n t h e
developer’s SDP or equivalent maintenance plan.

b. Individuals conducting QA evaluations must be independent
from the individuals who developed the software product, performed
the activity under review or are responsible for the software product
or activity.

44 DA PAM 73–7 • 25 July 1997

c. On-going audits, inspections or other QA evaluations are per-
formed to assure that—

(1) Each software development activity that applies to the pro-
gram, including the others in this chapter, is being performed in
accordance with the SDP.

(2) Each software product undergoes software product evalua-
tions, testing, and corrective action as required.

d . P r o b l e m s d e t e c t e d a r e e n t e r e d i n t o t h e c o r r e c t i v e a c t i o n
system.

e. Software QA records are prepared and maintained to document
QA actions accomplished and their results.

f. The duration of this activity is the life time of the system.

8–7. Corrective action
a. The objective of the corrective action activity is to ensure a

consistent and controlled process for tracking and resolving prob-
lems throughout the software development process. Problems and
recommended changes to either software products or development
activities should be handled by a corrective action system. Typical-
ly, items must be under project level or higher configuration control
before the following requirements apply.

b. Requirements for a corrective action system are—
(1) Consistent use of standardized problem/change reports to doc-

ument problems.
(2) Consistent classification and prioritization of software prob-

lems in accordance with paragraph 2–2 f.
(3) Analysis of data in the corrective action system to detect

trends in reported problems.
(4) P e r i o d i c e v a l u a t i o n s o f c o r r e c t i v e a c t i o n s t o d e t e r m i n e

whether problems have been resolved, adverse trends have been
reversed and changes have been correctly implemented without in-
troducing additional problems.

(5) The corrective action system be closed-loop. That is, all de-
tected problems are promptly reported, entered into the system,
action to resolve them is initiated, resolution is achieved, status of
problems is regularly reported, and corrective action records are
maintained.

c. The fault profiles, reliability, and requirements stability metrics
examine various aspects of the corrective action system.

d. Different organizations may employ different corrective sys-
tems throughout the life of a project, however the requirements
above apply to all corrective action systems.

8–8. Joint reviews
a. Joint technical or management reviews among developer and

acquirer personnel are convened for the purpose of reviewing the
status of the project or product, to surface and resolve outstanding
issues, determine and concur on strategies to mitigate identified
risks and to foster communication. It is recommended that users also
participate, especially in demonstrations involving user interfaces, in
order to elicit feedback based on the user’s view from a total
mission perspective. Specific reviews are not mandatory, but some
degree of formal interaction between developer and acquirer is nec-
essary and may be mutually agreed upon.

b. In addition to areas covered in item paragraph a above, techni-
cal reviews typically—

(1) Examine in process or final software products for accuracy,
c o n s i s t e n c y , c o m p l e t e n e s s , a d e q u a c y o f t e s t i n g i n f o r m a t i o n , a n d
understandability.

(2) Review and demonstrate proposed technical solutions.
(3) Provide insight and obtain feedback on the technical effort.
(4) Surface and resolve technical issues.
(5) Identify near and long term risks with respect to quality, cost

or schedule concerns. The software metrics discussed in chapter 10
of this pamphlet can contribute to identifying areas of technical risk.

c. In addition to areas covered in item paragraph a above, man-
agement reviews typically—

(1) Review overall project and software product status.
(2) Resolve open issues from technical reviews.
(3) Surface and resolve management issues.

(4) Obtain timely acquirer approvals and commitments needed to
accomplish the project within schedule, cost or other constraints.

(5) Identify near and long term risks with respect to concerns not
raised in technical reviews. The software metrics discussed in chap-
ter 10 of this pamphlet can contribute to identifying areas of man-
agement risk.

d. Representative management reviews have been identified in
the activity descriptions of chapters 5–7. Additional formal reviews
that may be appropriate for some programs are: software plan re-
v i e w , o p e r a t i o n a l c o n c e p t r e v i e w s , t e s t r e s u l t r e v i e w s , s o f t w a r e
usability reviews, software supportability reviews, or critical re-
quirement reviews. The consolidated software standards in para-
g r a p h 2 – 2 d i d e n t i f y c a n d i d a t e i s s u e s f o r r e s o l u t i o n a t t h e s e
meetings.

e. Milestone decision reviews (MDRs) are required for all de-
fense systems acquired via DODD 5000.1. Approval by the desig-
n a t e d G o v e r n m e n t m i l e s t o n e d e c i s i o n a u t h o r i t y i s n e e d e d t o
commence the activities of the next life cycle phase. Figure 1–1
depicted the standard system decision milestones and phases. Mile-
stones are sometimes tailored or combined as is most effective for a
particular program. During a MDR, the status of all major aspects of
the system’s development progress are reviewed including DT and
OT results to date and whether the TEMP’s exit criteria from the
current phase have been satisfactorily met. Movement to the next
life cycle phase is recommended, as appropriate. Exit criteria for the
next milestone review are also established. Decision authorities for
major defense programs are the Defense Acquisition Board (DAB),
ASARC, and MAISRC.

f. An in-process review may be requested by the milestone deci-
sion authority at any time. It is similar but narrower in scope than
an MDR. The purpose of an IPR is to determine—

(1) Current program status.
(2) Progress since the last decision authority review.
(3) Program risk and risk reduction measures.
(4) Potential problems that require guidance.
g. The software metrics discussed in chapter 10 of this pamphlet

can contribute to reporting program status at MDRs or IPRs.

8–9. Other considerations
Program, project, or product managers of designated major AIS
(MAIS) programs must report quarterly through the PEO to the
appropriate DOD chief information officer in accordance with DOD
5000.2–R. The status of the program, its progress, significant issues,
risks and risk reducing strategies are accounted. Many of the CE
activities and metrics discussed in this pamphlet can contribute
directly to the PM’s assessment of—

a. Schedule and progress.
b. Growth and stability.
c. Funding and personnel resources.
d. Product quality.
e. Software development performance.
f. Technical adequacy.

See chapter 10 for an illustration that correlates specific metrics to
MAIS assessment issues.

Chapter 9
Post Deployment Software Support Considerations

9–1. Purpose
Post deployment software support refers to modifications or up-
grades made to a system’s software following the system’s MS III
decision review and initial fielding. This chapter outlines issues
pertinent to PDSS and approaches for addressing those issues.

9–2. Scope
a. This chapter applies to the production and deployment, opera-

tions, and support life-cycle phases.
b . S y s t e m m o d i f i c a t i o n s a n d u p g r a d e s i n c l u d e m u l t i - s y s t e m

changes, block changes, preplanned product improvements, class I

45DA PAM 73–7 • 25 July 1997

ECPs, and system change packages. In this chapter, the modifica-
tions of software and computer resources, regardless of how the
change is implemented, is referred to as a software change package.

c. System changes that are extensive enough to warrant approval
as a major modification in a post MS III decision review are not
considered PDSS, but a variation of a new program start. The
milestone decision authority determines which acquisition phase the
program should enter.

d. The applicability of procedures in this chapter to any given
program and the extent to which they are carried out is dependent
o n o v e r a l l s y s t e m f a c t o r s , s u c h a s d e p l o y m e n t p h i l o s o p h y , t h e
criticality and urgency of a change.

9–3. Objective
The objective of PDSS is to correct deficiencies. Deficiencies in-
clude both problems reported by users or detected during software
maintenance, and modifications needed to improve system software
to meet new or changed requirements.

9–4. PDSS issues
a . T h e P D S S e n v i r o n m e n t g e n e r a l l y p r o d u c e s m a n y s m a l l

changes over a period of time rather than a few large changes. The
PDSS organization typically collects these changes into a few for-
mal software releases to avoid disrupting the fielded system. Differ-
ences in the amount of change to software and timing of software
releases should be considered in identifying the scope of total T&E
required and the extent of T&E team involvement.

b. Software development activities performed in PDSS are the
same as those carried out prior to first fielding. They are tailored as
appropriate, however, to reflect the effort required to implement
each SCP, update pertinent documentation, verify the SCP, and
issue changes to users. The scope of the change and the criticality of
affected software units should be considered in determining the
SCP’s T&E strategy.

c. If a SCP does not have operational impact, then the PDSS
agent determines the action necessary to support the decision to
field the change. The maintenance PM determines—

(1) The scope of software change in the SCP.
(2) The amount of rework necessary to implement the changes.
(3) The amount of testing needed to ensure that new or modified

f u n c t i o n s o p e r a t e p r o p e r l y a n d t h a t n o n e w e r r o r s h a v e b e e n
introduced.

d. Changes that introduce new or revised operational require-
ments or changes that may have an operational impact on the sys-
tem require independent developmental and operational evaluations.
Testing must provide the information needed to evaluate the impact
of the change.

e. The urgency of delivering a change to user agencies may have
an impact on the extent and thoroughness of a given T&E effort.

9–5. Controlling software changes
a. Changes to the software production baseline are documented

on ECP–S and categorized based on the urgency of implementation
in accordance with MIL-STD–973 (emergency, urgent or routine).
They are also prioritized in accordance with paragraph 2–2 f relative
to the impact on operational mission effectiveness.

b. An ECP–S often addresses a set of related problem/change
reports. Packages of changes are approved and scheduled for imple-
mentation by the appropriate CCBs (see chap 8).

9–6. Scope of testing
a. The developer performs software unit testing and unit integra-

tion and testing of the new or modified software units.
b. The developer should repeat some or all aspects of qualifica-

tion testing (CSCI and system) to demonstrate that previous require-
ments are unaffected and new or modified requirements are met.

c. When independent developmental or operational evaluations
are necessary, the procedure outlined in paragraph 9–7 can assist in
determining the level of DT/OT needed to support those evalua-
tions. In general, these evaluations are needed when changes in

c o m p u t e r r e s o u r c e s (h a r d w a r e , s o f t w a r e , f i r m w a r e o r
communications):

(1) Have a physical impact on either the operation or support of
the system.

(2) Have a noticeable impact on the system’s operational effec-
tiveness, suitability, and survivability, affect user interfaces, or im-
pact critical mission functions.

(3) Cumulatively affect 15% or more of the software units in the
system since the last time such evaluations were made.

9–7. Determining test support needed for independent
evaluation

a. The procedure described in this paragraph assesses various
aspects of the deployed system’s T&E history, current maintenance
environment and potential impact of the SCP on the system’s opera-
tional effectiveness and suitability. The intimate knowledge and
informed judgment of the test IPT and CCB principals should guide
the decisions made in applying the procedure described in this
paragraph and in interpreting its results.

b. There are several steps in the procedure:
(1) Determine the potential problems for a SCP using figure 9–1.
(2) Determine the likelihood of each problem using table 9–1.
(3) Determine the severity of each problem using table 9–2.
(4) Combine the findings of tables 9–1 and 9–2 to determine the

amount of testing needed for that problem using table 9–3.
(5) Tailor the DT and OT measures of performance (MOPs) and

measures of effectiveness (MOEs) to address the problem.
c. Examine all DT and OT MOPs needed to adequately test the

SCP to plan the necessary test events. It is the responsibility of the
evaluator to determine the most effective mix of DT and OT to
s u p p o r t t h e i r e v a l u a t i o n s . T h i s c o u l d e n t a i l s u b s t a n t i a l u s e o f
developer test information, concurrent DT/OT exercises, simula-
tions, or other strategies. See chapters 3 and 6 of this pamphlet and
DA Pam 73–4 and DA Pam 73–5 for guidance on planning develop-
mental and operational tests.

d. It is recommended that the figure 9–1 checklists be used sev-
eral times during the course of SCP planning and implementation to
improve the estimate as more information becomes known. The last
check should contain no “ unknown” answers—mark these as “ yes”
to represent worst case.

Table 9–1
Determining problem likelihood

Probability of When the problem will—
problem is

Very High Occur frequently in the system’s life
High Occur several times in the system’s life
Medium Likely occur at some time in the system’s life
Low Probably not occur in the system’s life, but may

occur

Table 9–2
Determining problem impact

Impact of problem If the problem causes—
is—

Catastrophic Mission failure, loss of system or loss of person-
nel

Major Severe mission degradation, personnel injury or
system damage

Minor Slight mission degradation, personnel injury or
system damage

Negligible Less than minor personnel injury or system dam-
age, no mission degradation

9–8. Other considerations
a. System post deployment review.

46 DA PAM 73–7 • 25 July 1997

(1) The PM should plan to convene one or more system post-
deployment reviews (SPRs) during PDSS to determine how well the
system is functioning. The first SPR is recommended approximately
6 months after all initial units are equipped or all site installation is
completed. The review should assess—

(a) How well the operational system is satisfying user require-
ments to meet the stated mission.

(b) The degree to which the system operates as the user expects
and provides the services expected.

(2) The PDSS agent uses SPR results to identify problems areas
and develop changes that will improve system performance and
usability. Additional reviews throughout the deployment and opera-
tions phase provide assurance that the SCPs continue to satisfy user
needs and improve overall system quality. Content of the reviews is
dictated by the initial system corrective actions, problem areas and
changes.

b. Emergency changes. In response to critical situations, emer-
gency changes may need to be released to the field within 48 hours.
While all changes must undergo validation, verification, and regres-
sion testing, emergency changes to deployed systems may not re-
quire formal developmental testing or operational testing prior to
release. All emergency changes, however, will undergo formal test-
ing with the next planned updates. The PM, with the concurrence of
the system user, may only be capable of performing limited testing
of emergency software corrections prior to granting release.

c. Test reusability. Test cases, data, and procedures stored in
developer SDFs may be necessary or desirable for enabling the
LCSEC/PDSS agent to retest software during maintenance more
effectively. If so, the appropriate items should be included in the
technical data package delivered by the developer.

Table 9–3
Degree of DT/OT needed to support evaluations

Probability Potential problem impact

of problem Negligible Minor Major Catastrophic

Low Light Moderate/Light Moderate/Light Moderate
Medium Light Moderate Heavy/Moderate Heavy
High Moderate Heavy/Moderate Heavy Intnsv/Heavy
Very High Moderate Heavy Intnsv/Heavy Intensive

Notes:
Intensive: Up to and including full repeated DT/OT from MS III plus changes
Heavy: DT with significant OT
Moderate: DT with OT excursions
Light: DT

47DA PAM 73–7 • 25 July 1997

Figure 9-1. Example checklist for determining potential problems in implementing a software change package

48 DA PAM 73–7 • 25 July 1997

Chapter 10
Army Software Metrics

Section I
General

10–1. Introduction
a. This chapter describes 14 software metrics for gathering infor-

mation over the life cycle of Army software-intensive systems.
b. Collecting additional metrics is also encouraged to support the

unique needs of specific agencies or programs. The Practical Soft-
ware Measurement initiative provides guidance on selecting other
metrics.

c. Many activities contribute to assessing software quality and
maturity as described in preceding chapters. The results of those
activities, however, cannot all be expressed as uniform, quantitative
measurements. Qualitative factors remain important to any software
evaluation. Quantitative measures, such as metrics, are less subjec-
tive in their interpretation and make changes from previous behavior
easier to detect and measure.

d. Software metrics are only one of many factors to consider
when evaluating software maturity.

10–2. Policy requirements
a. Previous Army policy required program managers to use and

report the first 12 metrics in section II. Recent acquisition reform
guidance precludes PMs from requiring developers to use and report
a specific set of metrics. The 14 metrics in section II have proved
useful in addressing issues integral to managing risk in software-
intensive programs. The description of each metric includes a tailor-
ing section with suggestions for alternative implementations. The
PMs also have the flexibility to implement each metric to take
maximum advantage of the information their software developer has
on hand.

b. Department of Defense Directive 5000–2R requires software
metrics be used on all acquisition category (ACAT) I, IA, and DOD
oversight systems. The cost, schedule, requirements traceability and
fault profiles metrics adequately support these reporting require-
ments. DOD policy also requires those systems to demonstrate, prior
to entering dedicated operational testing, that requirements and de-
sign are stable and that adequate and sufficient testing of software
and interfaces has occurred. The requirements stability, design sta-
bility, depth of testing and breadth of testing metrics can serve this
purpose.

c. DOD 5000–2R requires MAIS programs to report their prog-
ress quarterly (see chap 8). The metrics in this chapter can provide
considerable information in preparing these status reports. An illus-
tration applying the Army metrics to each management issue in the
report is supplied in section III.

10–3. Types of metrics
a. The Army metrics fall into three general categories as shown

in figure 10–1. Management metrics deal with contracting, program-
matic, and overall management issues. Requirements metrics pertain
to the specification, translation, and volatility of requirements. Qual-
ity metrics address testing and other technical characteristics of
software products.

b. Software development projects typically track the information
and collect the data items needed for the metrics described in this
chapter. This detailed data, however, is often used only at lower
levels of management within a developer’s organization. Summaries
are not usually reported to higher level managers in a form suitable
to support program management decisions. The suggested metric
displays presented in this chapter should be annotated with program
specific information. The resulting information displays will provide
program managers with the insight needed to make informed deci-
sions on software management issues. Displays other than those
suggested may be appropriate depending on the decisions to be
made.

c. Several metrics are often needed to evaluate an activity or an

issue of interest. For instance, to address whether a program can
remain on schedule, relevant metrics include schedule, requirements
and design stability, development progress, depth and breadth of
testing, and fault profiles. Each metric description includes manage-
ment information and correlations with other metrics where analysis
of program issues takes place.

10–4. Application
The preceding chapters relate the activities of software development
to software metrics. Figure 10–2 shows the application of metrics
over the life cycle. The same metrics used to monitor the develop-
ment activities described earlier in this pamphlet are used to monitor
the corresponding activities during PDSS.

10–5. Metrics program considerations
In order to gain the most useful insight into software processes and
products, the following should be considered when planning a met-
rics program or when analyzing metrics data:

a. Be sure the metric data definitions are consistent. For example,
the definitions for unit, module, function, and lines of code should
be established and followed for the project by all involved in collec-
ting and interpreting the metrics.

b. Metric displays should be combined with other qualitative
information. Decision makers must consider program issues when
analyzing and evaluating metrics data.

c. Metric displays should be used to portray trends over time,
rather than placing too much importance on a calculated value at a
single point in time.

d. Never use metrics to evaluate personnel. People will focus on
manipulating metrics rather than doing their jobs.

e. Metrics can be expensive in terms of resources. Tailor them to
use data already available from the software developer. Appendix B
discusses how to contract for a software metrics effort.

10–6. Organization and approach
Each software metric is presented in the following format:

a. Description. The type of information the metric is used to
assess or present for viewer analysis is briefly described.

b. Application. The typical period(s) in the life cycle when mean-
ingful data are available to support the metric. A reporting fre-
q u e n c y i s r e c o m m e n d e d t o a l l o w t i m e l y t r e n d a n a l y s i s a n d t o
initiate corrective action, if needed. Other information to consider
before actually collecting the metric is provided when appropriate.

c. Data definitions. Recommended data items and the level(s) at
which it is appropriate to collect the items are listed here. The
definitions are elaborated in appendix C.

d. Presentation and analysis. Sample displays are provided for
viewing and interpreting the metric data.

e. Management information. Program issues that the metric ad-
dresses are discussed in this paragraph, as well as guidance in
related areas that may require additional management planning or
decisions. Guidance in evaluating this metric with others in this
pamphlet to derive a more complete picture of software product
maturity is provided.

f. Tailoring. Alternatives for data presentations, reporting fre-
quencies, level of data collection, or other pertinent information
regarding the recommended approach are offered.

Section II
The Army Metrics Set

10–7. Cost metric
a. Description. The cost metric provides insight into the actual

cost expenditures for software development tasks, compared to the
initial cost estimates. Data for the metric were selected from the cost
accounting system used for most DOD acquisition programs, the
cost/schedule control systems criteria (C/SCSC). The C/SCSC, de-
scribed in DOD Instruction (DODI) 7000.2, is used to track cost,
schedule, and technical performance.

49DA PAM 73–7 • 25 July 1997

Figure 10-1. The Army’s software metrics

b. Application.
(1) Data collection and reporting. Cost data collection begins at

the start of the program and continues through fielding and PDSS.
The recommended reporting frequency for this metric is at the end
of each financial reporting period, which is typically monthly.

(2) Preparation.
(a) The first step in applying the software cost metric is to iden-

tify the appropriate software work tasks, or activities, as cost ele-
ments in a program. Identifying cost elements allows managers to
monitor system software cost risk issues. Cost accounting elements
a r e i d e n t i f i e d t h r o u g h t h e u s e o f a w o r k b r e a k d o w n s t r u c t u r e
(WBS). A WBS element is an identifiable item of hardware, soft-
ware, services, data or facilities. As a general rule, every develop-
ment activity in chapters 5 through 8 that applies to a particular

program can be classified as a cost element. Procedures for develop-
ing a WBS and its hierarchy of levels are defined in Military
Handbook (MIL-HDBK) 881. The handbook provides examples of
software development activities with definitions of the work per-
formed in each type of activity.

(b) The WBS should allow software costs to be accountable to
individual computer software configuration items (CSCIs), builds,
subsystems or system as deemed appropriate for the activity and
level of visibility needed to monitor risk effectively.

(c) Table 10–1 contains examples of development activities dis-
cussed in this pamphlet and collection level recommended for the
cost metric. The WBS elements in the table primarily cover techni-
cal effort related to producing and maintaining application software.

50 DA PAM 73–7 • 25 July 1997

Figure 10-2. Metrics during the life cycle

(d) As appropriate, items dealing with data center facilities, serv-
i c e s a n d h a r d w a r e , o r d a t a b a s e a d m i n i s t r a t i o n a n d m a i n t e n a n c e
should also be tracked with the cost metric if they are considered
potential risks to overall program cost or schedule objectives.

51DA PAM 73–7 • 25 July 1997

Table 10–1
Examples of software related WBS elements/development
activities

By CSCI 1 By (sub)system

S/W requirements analysis 2 System requirements analysis
S/W design 2 System design
S/W implementation & unit test- S/W development environment 2

ing 2

Unit integration & testing 2 CSCI/HWCI integration & testing 2

CSCI qualification testing 2 System qualification testing 2

Corrective action (S/W PCR res- Project planning & oversight
olution) 2, 3

Software data Joint reviews
S/W quality assurance 2

S/W configuration management 2

S/W product evaluation 2

Verification and validation 2

S/W fielding 2

S/W transition 2

Total 2, 4

Notes:
1 Separate accounting of CSCIs by build may be appropriate.
2 Recommended for cost metric tracking.
3 Includes applicable rework (redesign, recode, unit re-integration and test).
4 Sum of all software development activities, plus any other software related
costs.

c. Data definitions. The following data items are collected for
each reported software WBS activity. Identification of the applicable
CSCI, build, and system may be needed in addition to the items
below.

(1) Budgeted cost of work scheduled: The budgeted cost of work
scheduled (BCWS) is the sum of the budgets for all work packages,
the level of effort, and apportioned effort scheduled to be accom-
plished within a given time period.

(2) Budgeted cost of work performed: The budgeted cost of work
performed (BCWP) is the sum of the budgets for completed work
packages and completed portions of open work packages, plus the
applicable portions of the budgets for level of effort and apportioned
effort. Some accounting methods refer to BCWP as earned value.
Some methods allow earned value for complete activities, while
others allow earned value to accrue incrementally.

(3) Actual cost of work performed: The actual cost of work
performed (ACWP) is the cost actually incurred in accomplishing
the work performed within the given time period.

d. Presentation and analysis.
(1) Figure 10–3 shows a sample graph of cost values plotted over

time. Because the cost metric is usually derived from the DOD’s
C/SCSC data, this is the most common display.

(2) The degree that actual cost values correspond to their original
planned values can be calculated and plotted over time as well. A
sample graph for the derived values of cost and schedule variances
is shown in figure 10–4. Note that a zero value for variances means
that the planned budget and schedule were achieved. Cost/schedule
performance values, or variances, are—

(a) Cost variance (CV) is the difference between planned and
actual cost.

CV = BCWP – ACWP
(b) Schedule variance (SV) is the difference between the amount

of work planned to be performed and actually completed.
SV = BCWP – BCWS

e. Management information.
(1) Software cost elements may include any expenditures re-

quired to develop or maintain a software product. The key to proper
application of the cost metric is to identify those WBS elements
pertinent to software which pose risk to the overall program.

(2) Exceeding the budget allocation at any point in a program is
cause for concern and investigation. This is easily detected as a

variance less than zero (for either cost or schedule). Consistently or
increasingly negative values for variances indicate that the system
may be delivered behind schedule or may exceed the budget.

(3) Cost is associated with all products and activities and can be
related to all other metrics. In general, an unfavorable trend in some
other metric may adversely affect cost.

(4) The cost metric compares actual software expenditures of
work done to the original budget. When assessing overall cost sta-
tus, however, consider the amount of unfinished work to be done
under the remaining budget. Other metrics that show the remaining
schedule events, requirements not yet traced and implemented, and
number of unresolved software faults provide information about the
amount of work remaining. Insight to the risk in achieving software
maturity can be derived by estimating the cost of re-work to fix
faults and to complete the trace and implementation of requirements
to final software products.

(5) Be aware that cost information may arrive as much as 60 to
90 days behind the delivery of other metric data. When evaluating
other metrics with cost, be sure that comparable time periods are
examined.

f. Tailoring.
(1) The acquirer can stipulate that developers report costs at any

level of detail required to effectively monitor the program. Tailoring
the cost metric involves developing a WBS that adequately iden-
tifies software elements and organizes them at the WBS level most
a p p r o p r i a t e t o e x p o s e p r o g r a m r i s k s . T h e W B S r e p o r t i n g l e v e l
should satisfy the risk management questions of each individual
program. The activities tracked by the cost metric come from the
WBS.

(2) Some accounting methods use the cost performance index
(CPI) and the schedule performance index (SPI).

CPI = BCWP/ACWP and SPI = BCWP/BCWS.
Values less than one for these indices indicate costs and schedules
exceeding estimates, respectively.

(3) A number of commercially produced automated tools are
available that can compute BCWS, BCWP, and ACWP based on the
accompanying WBS. Using the output of these tools is an effective
method of tailoring the cost metric.

10–8. Schedule metric
a. Description. The schedule metric indicates the degree to which

program events adhere to a work schedule plan and complements
the schedules typically used on programs. This is accomplished by
regular reporting of actual achievements in relation to the original
s c h e d u l e . M o s t i m p o r t a n t l y , t h e r e c o m m e n d e d d i s p l a y s f o r t h e
schedule metric show the changes to the schedule for future events,
over time. Monitoring schedule changes will indicate the level of
risk associated with achieving future program milestones and pro-
viding key software deliverables on time.

b. Application.
(1) Data collection and reporting. Data collection for the sched-

ule metric begins at program start and continues through fielding
and PDSS of the system. The recommended reporting frequency for
this metric is monthly.

(2) P r e p a r a t i o n . S o f t w a r e d e v e l o p m e n t a n d m a i n t e n a n c e p r o -
grams normally establish a schedule similar to that shown in figure
10–5. Identify any milestone, event or activity which may pose a
risk to meeting software or system schedule goals if not initiated or
completed on time. Track these events with the schedule metric. It
is often advantageous to track events for individual CSCIs and
builds separately.

52 DA PAM 73–7 • 25 July 1997

Figure 10-3. Sample cost expenditure graph

Figure 10-4. Sample cost performance trend graph

53DA PAM 73–7 • 25 July 1997

Figure 10-5. Typical program schedule

c. Data definitions. For each item selected for schedule metric
monitoring collect—

(1) Planned start date.
(2) Planned end date.
(3) Actual start date.
(4) Actual end date.
d. Presentation and analysis. Information displays for the sched-

ule metric focus on the difference between the original plan and
subsequent changes. A problem with many software schedule repor-
ting systems is that new schedules, similar to figure 10–5, are issued
to completely replace previous schedules. The result is that informa-
tion on the original time allocations is lost. Without the ability to
compare a new schedule to the original schedule, it is difficult to
determine if changes are realistic, or if program risk has been
increased.

(1) One recommended display of schedule data is a graph of
planned start dates for program milestones and key software deliver-
ables over time, as shown in figure 10–6. Planned start dates for an
event are plotted until the event actually begins (that is, an actual
start date is reported). In this example, the planned start dates for

several software development activities are plotted over the month
in which the data was reported. The graph clearly shows the com-
pression of time between the start of software requirements analysis
and design. To read the graph, find the metric reporting date (pro-
gram month) on the x-axis and read the appropriate planned start
date on the y-axis. For example, at month one, requirements analy-
sis was planned to start in month two, and the software design was
planned to start in month seven. At month two, the start of require-
ments analysis has slipped to month three (a slip of one month), but
the start of software design has remained the same. At month five,
the start of requirements analysis has slipped to month six (a total
slip of four months), and the software design schedule has slipped
only one month.

(2) Another recommended display is shown in figure 10–7. This
graph is similar to figure 10–5 but uses bars to represent long-
duration events. The bottom of the bar represents the planned start
date for an activity; the top of the bar represents the planned end
date.

54 DA PAM 73–7 • 25 July 1997

Figure 10-6. Sample schedule metric graph

Figure 10-7. Sample graph of changes in activity durations

e. Management information.
(1) The most common problem with a software program schedule

is that realistic adjustments of the schedule are not made in response
to early changes in program events. Events that do not start on time
often do not end on time. In a chain of events, a delay in one event

can delay one or more of the events that follow it. Failing to adjust
future schedule dates after slipping an earlier event reduces the time
and budget to complete future software-related activities. Maintain-
ing the original end dates in a schedule after early delays usually
requires additional resources.

55DA PAM 73–7 • 25 July 1997

(2) The schedule metric indicates potential risks in meeting the
s c h e d u l e f o r f u t u r e a c t i v i t i e s . T h e r e c o m m e n d e d d i s p l a y s s h o w
clustering or “ bunching” of events or whether the amount of time
allotted for long-duration events has been shortened or extended.
B u n c h i n g o c c u r s w h e n s c h e d u l e s l i p s a r e e x p e r i e n c e d i n e a r l y
e v e n t s a n d f u t u r e p r o g r a m e v e n t s r e t a i n t h e i r o r i g i n a l s c h e d u l e
dates. If bunching is allowed to continue, there may not be enough
time to complete all future scheduled events.

(3) The PM may wish to establish criteria for action to be taken
in response to schedule changes revealed by the metric. Events that
have slipped several times, events whose time allocation is consider-
ably shortened or lengthened, or failure to reschedule future events
after significant changes have occurred to early activities may need
to be justified by the developer.

(4) Since schedule is associated with all software products and
activities, this metric can be correlated with all other metrics. In
general, an unfavorable trend in some other metric may adversely
affect the schedule.

(5) The schedule metric can be used in conjunction with other
metrics to assess program risk. The fault profiles and development
progress metrics provide information about the amount of work
which remains to be done. The cost metric indicates if resources are
available to accelerate the work rate and meet the original schedule.
The cost and schedule metrics together can be the best early indica-
tors of problems areas, allowing managers to focus attention in these
areas and resolve problems before they get out of hand.

(6) Note that the schedule variance computed under the cost
metric does not identify specific events which are behind or ahead
of schedule, nor by how much in terms of calendar time. The
schedule variance only indicates how many dollars the program is
behind or ahead of schedule.

f. Tailoring. It is often easier to portray the schedule metric in a
table listing the planned and actual start and end dates for key
activities. The graphs, however, present the information in a format
which makes the changes to future event allocations much easier to
see.

10–9. Computer resource utilization metric
a. Description. This metric shows the degree to which estimates

and measurements of computer resources are changing or approach-
ing the limits of resource availability. Constraints in computer re-
source utilization can lead to poor performance in the operational
environment. The primary objective of this metric is to determine
whether computer resources are adequate to handle the most de-
manding anticipated operational workloads. A second objective, no
less important, is assurance that reserve capacity for future mainte-
nance and enhancement exists prior to initial fielding.

b. Application.
(1) Data collection and reporting. Initial values for computer

resource allocations and acceptable limits on utilization are derived
from system requirements during the system requirements analysis
activity. As system requirements are distributed among hardware
and software items as a result of the system requirements analysis,
system design, software requirements analysis and software design
activities, more refined values are available. The activity descrip-
tions in chapter 5 provide more detail on this process. Collect host
(software development/test environment) estimates of resource allo-
cations and projected usage, then the estimates for the target plat-
f o r m . M e a s u r e m e n t s d u r i n g t h e d e v e l o p m e n t p e r i o d s h o u l d b e
reported monthly. The CRU measurements should be reported as
n e e d e d i n P D S S , e s p e c i a l l y w h e n t h e s y s t e m c o n f i g u r a t i o n i s
changed, but at least once for each fielded release.

(2) Preparation.
(a) This metric requires system computer resources to be identi-

fied and usage budgets allocated to them. The minimum set of
resources to monitor are central processing units (CPUs), input/
output (I/O) channels, storage devices, and memory.

(b) Establish a target upper bound on utilization for each re-
source. The upper bound is often set to reflect the amount of unused
reserve capacity the resource must have to ensure adequate system
performance and to provide a margin for growth after delivery.
Resource measurements below this value are considered acceptable.
Readings above the upper bound are cause for further investigation.
The bounds should be set low enough to allow remedial action to be
planned and initiated while allowing work in progress to continue in
the short term. Target upper bounds for hardware resources are
system dependent. A target upper bound is usually set no higher
than 50 percent for all resources in MSCR programs (see DA Pam
70–3). An upper bound of 70 percent utilization for AIS may leave
adequate reserve. Target upper bounds for all computer resources in
a system need not be identical.

(c) In multi-processor environments, each processor should be
tracked separately, and each should be allocated a planned utiliza-
tion. For memory, the resource measured is random access memory
(RAM). The RAM for this metric refers to both volatile and non-
volatile (for example, read only) memories. For storage, resources
include disk space and other mass storage.

(d) Resource utilization is often measured by the host or target
computer system. While the measurements contribute slightly to
system overhead, these features typically come with computer sys-
tems in their off-the-shelf configuration. In instances where the
system does not measure itself in terms of resource utilization, the
utilization should be measured using probes or other similar devices.

(e) CRU should be measured when the system is operated in
accordance with the operational mode summary/mission profile dur-
ing development, typically during qualification testing, DT, and OT.

c. Data definitions.
(1) For each computer hardware resource in the system collect—
(a) A resource identifier.
(b) Type of resource.
(c) Units of measurement.
(d) Maximum capacity of resource.
(e) Target upper bound on resource usage (percent of capacity).
(f) Projected resource usage (percent of capacity).
(g) Actual resource usage (percent of capacity).
(2) It is recommended to track at least the hardware resources of

CPUs, I/O channels, storage devices, and RAM.
(3) For each CSCI in the system collect—
(a) CSCI identifier.
(b) Items b through g of paragraph 10–9 c(1) above for the

CSCI’s allocation and use of a particular hardware resource.
(4) It is recommended to track at least the RAM and mass stor-

age used by each CSCI.
(5) Actual usage should be measured during peak operational

periods and should include the operating system and other off-the-
shelf software as well as the software being developed. Similarly,
projected usage should be based on estimates of peak operational
periods and should include the off-the-shelf software and the soft-
ware under development. Peak load conditions for computer re-
s o u r c e s u s u a l l y o c c u r u n d e r t h e o p e r a t i n g e n v i r o n m e n t a n d
circumstances described in the OMS/MP.

d. Presentation and analysis.
(1) Figure 10–8 is a sample graph of utilization values for a

single CPU resource plotted over time. Similar graphs can be con-
structed for the utilization of all other CPUs plus each I/O and
memory resource.

(2) As software development proceeds, the measured values for
each category should be projected for the operational environment.
For instance, stimulation testing of system functions yields CRU
values that can be used to project the CRU for functions yet to be
developed.

56 DA PAM 73–7 • 25 July 1997

Figure 10-8. Sample computer resource utilization graph

e. Management information.
(1) Resource utilization tends to increase during system develop-

ment. Therefore, adequate planning is essential to ensure that the
software operation does not put undue demands on the target hard-
ware capabilities. This metric tracks utilization over time to make
sure that sufficient capacity remains for future growth and for peri-
ods of high stress loading.

(2) This metric can be applied to a system architecture which is
distributed or centralized.

(3) When target upper bounds are approached or exceeded, it
may be necessary to change hardware, change software, reallocate
requirements, or raise the target upper bounds. The last option
should not be pursued unless the original target upper bound was
well below the usable capacity of the resource.

(4) A target upper bound above 90 percent is usually too high to
provide sufficient early warning of potential resource overload.

(5) CRU reporting may reveal under-utilized computer resources.
Unexpectedly low utilization values may be a result of initial over-
estimation, reduction of functionality due to requirements changes,
reallocation of functions to other computer resources during design
and implementation, or measurements taken at less than peak load
conditions.

(6) The developer should be tracking or projecting overall sys-
tem-level performance using measures such as messages per hour,
transactions per minute, or targets per engagement. These measures
should also be taken when the system is operated in accordance
with the OMS/MP. If the system is not meeting these system-level
requirements, CRU of the various computer resource components
should be examined to determine where the performance bottlenecks
are.

(7) A l l e v i a t i n g o n e r e s o u r c e b o t t l e n e c k s o m e t i m e s e x p o s e s
others. When the first problem is remedied, the device’s throughput
may improve to such an extent that previously untaxed resources
become overloaded.

(8) In instances where the development testing and target envi-
ronments differ in types and/or capacities, caution should be taken

in computing and analyzing the measures. Projections based on the
development test environment are acceptable up to a certain point,
but testing on the target hardware should take place as early as
possible.

(9) Growth in resource utilization is often not predictably linear.
Also, utilization may not always be directly controllable by the
developer. For example, upgrading commercial NDI software to
newer releases may reduce the resources available to application
programs due to enhancements added by the vendor. Incremental
developments or other management actions that defer requirements
should take this into account when preparing resource budgets.

(10) Utilization problems in CPU and memory are often observed
as “ deadlocks,”“ crashes,”“ high traffic,” and “ slow response.”

(11) CRU relation with other metrics is summarized in table
10–2.

Table 10–2
CRU relation with other metrics

Metric Relation

Cost Potential cost overruns due to additional hard-
ware, software redesign, etc.

Schedule Potential schedule slips due to redesign or real-
location.

Requirements Have all requirements been implemented in the
traceability code? What is the utilization impact of those that

have not?
Requirements Utilization values change as requirements/code
stability change.
Design stability Utilization values change as code changes.
Fault profile Over-utilization can lead to serious faults.
Reliability Over-utilization can lead to system failures.

f. Tailoring.
(1) The recommended CRU reporting frequency can be modified

from monthly to occur less often; perhaps only at specified points,
bimonthly or quarterly. However, CRU is difficult to correct after

57DA PAM 73–7 • 25 July 1997

thresholds have been exceeded and early warning through CE may
be beneficial.

(2) CRU could also be tracked for implementation and test re-
sources in the software development environment that are not part
of the deliverable system, such as workstation utilization or availa-
bility. This will ensure developers are getting the computer re-
sources to perform their jobs.

(3) CRU metric data gathering can be a part of the regular oper-
ating system functions, or passive monitors may be implemented.

(4) Tailoring may be appropriate for situations when dynamic
allocation, virtual memory, parallel processing, multitasking, or mul-
tiuser-based features are employed.

(5) The developer can collect additional metrics when and where
appropriate. These may include tracking the amount of swapping,
paging, and network utilization as well as response time.

10–10. Software engineering environment (SEE) metric
a . D e s c r i p t i o n . T h e s o f t w a r e e n g i n e e r i n g e n v i r o n m e n t m e t r i c

provides a rating of the developer’s application of software en-
gineering principles. Examples of these principles are the use of
structured design techniques, the extent of tool usage, and the use of
requirements management techniques. If practical, assessments can
also be applied to materiel developer personnel or the program
m a n a g e r ’ s m a t r i x s u p p o r t s t a f f t o a s s e s s t h e i r c a p a b i l i t i e s w i t h
r e s p e c t t o d e v e l o p i n g s o f t w a r e . R a t i n g o f s o f t w a r e d e v e l o p e r s
should be performed by a qualified independent group. Performing a
software engineering environment assessment is described in reports
Carnegie Mellon University/Software Engineering Institute (CMU/
SEI) –87–TR–23 and CMU/SEI–93–TR–24. The acquirer is respon-
sible for ensuring that the proper methodology is used during the
assessment of software process maturity.

b. Application.
(1) Data collection and reporting. An assessment should occur

whenever a software developer is brought onto a program. Reassess
any previously identified risks at major milestones to monitor im-
p r o v e m e n t s i n t h e d e v e l o p e r ’ s s o f t w a r e e n g i n e e r i n g p r o c e s s
maturity.

(2) Preparation.
(a) The SEE metric uses the Software Engineering Institute’s

(SEI’s) capability maturity model (CMM) to measure a developer’s
efforts in identifying and improving software process maturity indi-
cators. The CMM provides an organized strategy for process im-
provement in stages. The stages are an evolutionary path, in that
improvements at each stage form the foundations for the next stage.
Information on an organization’s current process is gathered prima-
rily by means of questionnaires.

(b) The SEI model outlines five levels of process maturity. Each
level, except level 1, is composed of constituent parts. Each level
focuses attention on a different set of process attributes, also called
key process areas. Each key process area (KPA) consists of numer-
ous key practices, that when addressed collectively, accomplish the
goals of the KPA. Some of the key practices are selected as key
indicators of whether the goals of a key process area are accom-
plished. Questions in the CMM questionnaires are based on these
key indicators.

(c) Have an assessment team follow the methodology outlined in
CMU/SEI–93–TR–24, which includes the following:

1. Collect questionnaire data from developer.
2. Conduct follow-up visits to answer further questions, observe

tools, and so forth.
3. Compile the findings from the previous two steps to identify

software process strengths and weaknesses in key process areas.
4. Calculate the developer’s overall process maturity level. A

particular level is achieved when findings indicate all key process
areas for that level and every level below it are fully satisfied. Table
10–3 shows the CMM’s allocation of KPAs to maturity levels.

c. Data definitions. Data for the SEE metric comes from the
findings of a process maturity assessment. For each assessment
collect—

(1) Developer name or other identification.

(2) The process maturity level determined as a result of the
assessment.

(3) The date the level was assigned.
(4) The type of assessment performed, such as developer’s self-

assessment, acquirer’s assessment of the developer, or independent
third party assessment.

(5) For each KPA that was examined record the item’s assess-
m e n t o u t c o m e (f o r e x a m p l e , s a t i s f a c t o r y , u n s a t i s f a c t o r y , o r n o t
reviewed).

Table 10–3
Capability maturity model definitions

At this process An organization demonstrates adequate capability in
maturity level these key process areas

1 (initial)
2 (repeatable) Software configuration management

Software quality assurance
Software subcontract management
Software project tracking and oversight
Software project planning
Requirements management

3 (defined) Peer reviews
Intergroup coordination
Software product engineering
Integrated software management
Training program
Organization process definition
Organization process focus

4 (managed) Quality management
Process measurement and analysis

5 (optimizing) Process change management
Technology innovation
Defect prevention

d. Presentation and analysis. Simple tabular presentations are
usually adequate to easily determine a developer’s past and current
process maturity level(s), KPAs that need improvement and those
areas in which the developer demonstrates strength.

e. Management information.
(1) The software engineering environment rating provides a con-

sistent measure of the capability of a developer to use modern
software engineering techniques in their development process, and
therefore their capability to instill such principles and characteristics
in their products. The basic assumption to this approach is that a
quality process results in a quality product. Other metrics and evalu-
ation techniques should be used to examine product quality.

(2) Although software engineers and managers often know their
problems in great detail, they often disagree on which improvements
are most important. The SEE metric’s use of standard CMM ques-
tionnaires allows engineers and managers to focus on a limited set
of key processes and work aggressively toward implementing them,
rather than being overwhelmed by the total process.

(3) The SEE rating assists the acquirer in identifying and narrow-
ing risk to specific areas generally accepted to have an affect on
effective software production. The PM should use the SEE metric to
focus on determining developer capabilities and to gauge the ability
and willingness of the developer to improve in weak areas over
time, not just on selecting one developer over another.

(4) An assessment often reveals that a developer is proficient in
KPAs from one or more CMM level higher than the rating number
assigned. For that reason, more information than the maturity level
number is relevant to appraising actual capability.

(5) SEE assessments conducted by an SEI trained team are desir-
able. However, acquirers are encouraged to train their staff how to
determine software development capability and to perform informal
assessments themselves.

(6) The software engineering environment rating can be used by
developers to find and improve weaknesses in their software devel-
opment process on their own.

(7) Be aware that the SEE metric reflects current practices only

58 DA PAM 73–7 • 25 July 1997

at the time of the assessment for the particular organization exam-
ined. Changes in a developer’s corporate environment, management
philosophy or other factors may lead to circumstances that detrimen-
tally affect KPAs over time. Therefore, occasional informal re-
e x a m i n a t i o n o f K P A s p r e v i o u s l y j u d g e d s a t i s f a c t o r y m a y b e
appropriate.

(8) A higher SEE rating should have a positive impact on all
other metrics.

f. Tailoring.
(1) After an initial SEE evaluation, assessments can be tailored to

focus primarily on risk areas uncovered in previous assessments.
(2) After an initial rating, a developer should periodically review

progress in the key process areas that were lacking in the prior
evaluation. Reporting at each major milestone is only beneficial for
long duration programs since it takes time to implement changes
and see improvement in corporate policy and procedure, and ulti-
mately software products.

10–11. Requirements traceability metric
a. Description. The requirements traceability metric measures the

level to which software products have implemented requirements
allocated from higher level specifications. Software products include
specifications, software design, code, and test cases.

b. Application.
(1) Data collection and reporting. Tracing software requirements

begins with the first specification produced in response to a defined
mission requirement for which an automated information solution is
foreseen and continues throughout the life of the program. The
recommended reporting frequency for this metric is at major mile-
stones during system or software development, or at major software
release points during PDSS.

(2) Preparation.
(a) The requirements traceability metric is an accounting of how

many requirements from one document are addressed in other docu-
ments. This is typically from higher to lower levels of specification
and corresponds to the evolution of requirements and design de-
picted on the left side of figure 1–2. Requirements are also tracked
to the tests that verify them; the right side of figure 1–2. In order to
do this, the hierarchy of technical documentation must be deter-
mined, and the relationship between the requirements in the differ-
ent documents evaluated.

(b) Top-level requirements for DOD systems are defined in the
mission needs statement (MNS). This original statement of user
requirements is expanded in subsequent documents. The specific
documentation set developed for a software-intensive system is tai-
lored to its acquisition category and other program-specific issues.
Table 10–4 is a representative matrix of different levels of require-
ments to the typical documents in which they are specified, elabo-
r a t e d o r v e r i f i e d . T h e l i s t r e f e r s o n l y t o d o c u m e n t s d e s c r i b e d
elsewhere in this pamphlet; other applicable documentation may be
substituted or added.

(c) At least one document from each level should be tracked with
the requirements traceability metric. The important point is that a
logical series of software requirements can be followed from top-
level operational requirements down to code and test cases. The
term “ software requirements” for this metric includes any software
interface requirements.

(d) The act of tracing means determining whether the require-
ments in one document are addressed in another. Usually the trace is
forward, from higher to lower level of detail. The document with
the lower level of detail was usually based on the higher level
document. The objective is to verify that all higher level require-
ments are allocated to lower levels and that lower levels do not add
any new requirements. The latter is often more easily accomplished
by reversing trace direction from lower to higher levels, also called
a backward trace.

(e) The relationships in table 10–5, or their equivalents, are rec-
ommended for tracking with this metric.

(f) The primary measure collected in the requirements traceability
metric is the account of requirements successfully traced from one
level to another. To facilitate this calculation a software require-
ments traceability matrix (SRTM) can be used to collect and organ-
ize the summary data described in the previous steps. The SRTM
should contain enough information to allow assessment of the rela-
tionship between various levels of requirements and the require-
ments to their design and test cases. An example of a SRTM is
shown in figure 10–9. The SRTM identifies the document(s) se-
lected for tracing at each level in columns and their common re-
quirements in rows representing the links from top-level system
requirements to detailed software requirements. In this format, iden-
tifying units which represent a required system function should be
apparent. Question marks in the sample SRTM mean that tracing
h a s n o t y e t o c c u r r e d . T h e d e g r e e o f c o m p l e t i o n o f t h e S R T M
depends upon the current stage of the software life cycle and which
documents are available for review. Also note that at each level of
the trace, a single requirement can be traced to multiple lower level
requirements.

c. Data definitions.
(1) For each system or software documentation level tracked to

another, collect—
(a) Names of the two documents assessed.
(b) Number of system/software requirements in the“ traced from”

document.
(c) Number of requirements in “ traced from” document success-

fully traced to the “ traced to” document.
(d) Number of requirements in “ traced from” document that

could not be traced to the “ traced to” document.
(e) If a backward trace is also performed between the two docu-

ments, record the number of requirements in the “ traced to” docu-
ment that were successfully traced back to the“ from document,”
and the number of requirements in the “ traced to” document that
could not be successfully traced back to the “ from document.”

(2) It is suggested that software requirements be reported by
individual CSCI.

(3) The relationships in table 10–5 are recommended for tracking
with this metric.

d. Presentation and analysis. Figure 10–10 is an example graph
recommended for the requirements traceability metric. The chart
provides a summary of a CSCI’s software requirements traced for-
ward to lower levels of design and code and backward to system
requirements.

e. Management information.
(1) Software test management procedures dictate that software

requirements should be traced to their individual qualification test
cases. Recording this trace provides visibility to ensure that software
requirements are adequately tested.

(2) Requirements traceability aids in determining the operational
impact of software problems. Failed requirements can be tracked
back to specific mission needs.

(3) Due to the detailed nature of the requirements traceability
metric, collecting this data is most cost effective if it is a normal
product of software development or a V&V effort. The consolidated
software standards identified in chapter 2 and table 10–5 request
forward and/or backward traces be provided as part of many of their
software documentation products. The SRTM should be part of the
developer’s deliverable technical data package.

(4) The SRTM is normally prepared by the software developer,
but should also be verified by an independent organization, such as
a n I V & V a g e n t o r L C S E C / P D S S p e r s o n n e l p r i o r t o s o f t w a r e
transition.

59DA PAM 73–7 • 25 July 1997

Table 10–4
Sample requirements level to technical document correlation

This type of requirement Is typically elaborated/implemented in And verified by tests described in

User/mission Mission Needs Statement (MNS)
Operational Requirements Document (ORD)

Test and Evaluation Master Plan (TEMP), System
Evaluation Plan (SEP)

User/system Users’ Functional Description (UFD)
Operational Concept Description (OCD)

TEMP, SEP

System System/Subsystem Specification (SSS)
Interface Requirements Specification (IRS) 1

Detailed Test Plan (DTP), Software Test Plan
(STP) 1

Software design Software Design Description (SDD),
Interface Design Description (IDD),
Database Design Description (DBDD)

Software Development Files (SDFs)

Unit design SDD, IDD, DBDD, Software Product Specification
(SPS) 2

SDFs

Notes:
1 IRS and STP apply when the system is an information system.
2 SPS contains or references the code and data.
3 Software documentation based on MIL-STD498/IEEE Std P1498/EIA IS 640.
4 All documents not applicable to all programs.

Table 10–5
Recommended items for requirements traceability metric tracking

From To Backward trace also

User requirements (mission) (MNS/ORD) User requirements (system) (UFD/OCD) Yes
User requirements (system) (UFD/OCD) System requirements (SSS) Yes
System requirements (SSS) Software requirements (SRS, IRS) Yes
Software requirements (SRS, IRS) Software design high level (SDD) 1 Optional
Software requirements (SRS, IRS) Software design detailed (SDD) 2 Optional
Software requirements (SRS, IRS) Code (SPS) Optional
Software requirements (SRS, IRS) Software qualification test cases Optional

Notes:
1 CSCI level design.
2 Unit level design.

(5) The PM and user representative may also want to evaluate the
SRTM. This evaluation can be intensive in time and effort but worth
the cost when problems or discrepancies are discovered and cor-
rected early.

(6) When evaluating the SRTM, consider the criticality of the
requirement to the system user and the criticality of the resultant
software function to system operation. A formal method may be
used to identify requirements which address key user operations or
critical system functions. Another method is to identify those units
which appear most often in the SRTM. These units represent crucial
basic software function because they are needed for multiple system
requirements and functions. These units can be developed earlier
and be given increased test scrutiny.

(7) Incremental or evolutionary acquisition strategies, such as
rapid prototyping , where all requirements are not known in advance
or specified to the same degree of detail, require the trace of re-
quirements be an iterative process. As new requirements add more
functionality to the system, the SRTM is revised and augmented.

(8) The SRTM can be a valuable management support tool at
system requirement, design or other joint reviews. It may also indi-
cate those areas of software requirements or design which have not
been properly defined.

(9) The PM should establish criteria for requirements traceability
thresholds for proceeding from one activity to the next, for example,

the percentage of SRS requirements which need to be traced to
detailed design before start of coding. Required levels of traceability
should be based on the degree of risk assumed for requirements that
are not traceable to this point. Individual thresholds are system
specific.

(10) During PDSS, if a function is modified, the SRTM can be
used to focus regression testing on particular CSCIs/units.

(11) This metric does not provide information on whether tests
have been executed or report test success or failure of specific
requirements. The SRTM can be tailored to include test result status
if desired.

(12) The relation of requirements traceability with other metrics
is summarized in table 10–6.

f. Tailoring.
(1) Implementing the requirements traceability metric in the man-

ner described above is complicated by non-hierarchical implementa-
t i o n s , s u c h a s o b j e c t - o r i e n t e d t e c h n i q u e s . P r o g r a m - s p e c i f i c
i m p l e m e n t a t i o n g u i d a n c e s h o u l d b e e s t a b l i s h e d f o r t r a c i n g a n d
counting requirements using object-oriented requirements analysis
and design methods. As a minimum, the percent traceable from the
SRS to code and SRS to test cases should be provided.

60 DA PAM 73–7 • 25 July 1997

Figure 10-9. Example of a software requirements traceability matrix

61DA PAM 73–7 • 25 July 1997

Figure 10-10. Sample requirements traceability graph

(2) The recommended level of reporting software requirements
traceability data is at the CSCI level. Lower levels of reporting,
such as against specific software units, may be appropriate to focus
on risk areas.

Table 10–6
Requirements traceability relation with other metrics

Metric Relation

CRU As more requirements are implemented in the
design and code, utilization values will increase.
Are any target upper bounds being approached
or capacities exceeded?

SEE A developer with a higher maturity level rating
can be expected to have an institutionalized
process to ensure all requirements are imple-
mented and tested.

Requirements Requirement changes should be reflected in the
stability documented design and code. Have changes

been traced to design, code, and test cases?
Design stability Requirements which are not implemented (or

traced) to design description documents (SDD,
IDD, and DBDD) prior to detailed design may en-
tail design changes when they are later imple-
mented.

Breadth of testing Have test cases been developed for each re-
quirement?

Fault profile A large number of software problem/change
reports in the requirements category may indi-
cate inadequate traceability of requirements.

Reliability Many software “ failures” are actually the result of
system or user requirements which are not found
or implemented improperly in the final software
code.

(3) It can be worthwhile to perform additional backward traces
on items marked optional in table 10–5, such as from code to

detailed design requirements. This can be accomplished, for exam-
ple, by making a list of all the distinct units which appear in the“
code” column of the SRTM. The list is then compared with the total
list of units in the detailed design documentation or alternate repre-
sentation, such as automated flow charts. Any unit which appears in
the “ code” column, but is not found in the detailed design, may not
support a requirement. The actual functions and need for these units
should be investigated.

(4) The SRTM approach can be applied to other types of require-
ments traces as well as software. The baseline correlation matrix
described in DA Pam 73–5, for example, documents major system
requirements, operational requirements (MNS, ORD), COICs and
system measures of effectiveness and performance to ensure re-
quirements remain consistent and is used as a tool in developing
additional operational issues (AOIs) and their associated measures.

10–12. Requirements stability metric
a. Description. The requirements stability metric indicates the

degree to which changes in the software requirements or changes in
the developer’s understanding of the requirements are affecting the
development effort. It also allows for determining the cause and
source of requirements changes.

b. Application.
(1) Data collection and reporting. Collection can begin with ap-

proval of the mission need statement. Collection begins in earnest
during the system requirements analysis activity and continues for
the lifetime of the system. The recommended reporting frequency
for this metric is monthly.

(2) Preparation. Mechanisms to perform and report product eval-
uations, a corrective action system and configuration management
procedures need to be in place in order to collect the data defined
below. In order to monitor the source of requirements changes, it is
recommended that some data items be collected separately for user
and developer categories.

c. Data definitions. Collect for each CSCI—
(1) Software requirements discrepancy status (cumulative total

detected and cumulative total resolved).

62 DA PAM 73–7 • 25 July 1997

(2) Total number of source lines of code (SLOC).
(3) Total number of SRS requirements.
(4) Number of SRS requirements added due to approved en-

gineering change proposals - software (ECP-Ss).
(5) Number of SRS requirements modified due to approved

ECP-Ss.
(6) N u m b e r o f S R S r e q u i r e m e n t s d e l e t e d d u e t o a p p r o v e d

ECP-Ss.
(7) Number of SLOC affected by approved ECP-Ss (proposed by

user/proposed by developer).
(8) Number of software units affected by approved ECP-Ss

(proposed by user/proposed by developer).
(9) N u m b e r o f E C P - S s g e n e r a t e d f r o m r e q u i r e m e n t s c h a n g e s

(proposed by the user/proposed by the developer).
d. Presentation and analysis. Figure 10–11 shows cumulative

requirements discrepancy counts, detected and closed, over time.
Figure 10–12 shows the number of ECP-Ss submitted each reporting
period by both the user and the developer.

e. Management information.
(1) When a program begins, the details of its operation and de-

sign are rarely complete, so it is normal to experience changes in
the specifications as the requirements become better defined over
time. (Note: Prototyping can help alleviate this problem, or at least
cause refinement to happen earlier in development.) When technical
reviews reveal inconsistencies, discrepancy reports are generated.
Modifying the design or the requirements to alleviate a problem
results in closing the associated discrepancy report. When a change
is required that increases the scope of the system, an ECP-S is
submitted.

(2) Allowances should be made for lower requirements stability

early on in cases where prototyping is used. At some point, howev-
er, the requirements should be firm so that only design and imple-
mentation issues will cause further changes to the specifications.

(3) The plot of open discrepancies can be expected to spike
upward at each review and to diminish thereafter as the discrepan-
cies are closed. High requirements stability is indicated when the
cumulative discrepancies curve levels off with most discrepancies
having reached closure.

(4) For each engineering change, the amount of software affected
should be reported in order to track the degree to which ECP-Ss
increase the difficulty of the development effort. Only those ECP-Ss
approved by the configuration control board should be tracked.

(5) It is recognized that the amount of SLOC is somewhat de-
pendent on both the application language as well as programmer
style. The key is to watch for significant changes to SLOC due to
requirements changes.

(6) The PM should establish criteria for requirements stability
thresholds for proceeding from one activity to the next. For exam-
ple, after joint technical review of the software requirements, the
requirements should be stable enough to allow the design to be
converted into code.

(7) The PM should also establish criteria for time to close open
r e q u i r e m e n t s d i s c r e p a n c i e s . C o s t a n d s c h e d u l e i m p a c t s m a y b e
noted when requirements discrepancies remain open after 30 days.

(8) Causes of program turbulence can be investigated by looking
at requirements stability and design stability together. If design
stability is low and requirements stability is high, the transfer from
design to code is not working well. If design stability is high and
requirements stability is low, the transfer from the users to the
design activity is not working well. If both design stability and
requirements stability are low, neither process is working well.

(9) The relation of requirements stability with other metrics is
shown in table 10–7.

Figure 10-11. Sample graph of requirements discrepancies over time

63DA PAM 73–7 • 25 July 1997

Figure 10-12. Sample graph of ECP-Ss over time

Table 10–7
Requirements stability relation with other metrics

Metric Relation

Cost, Schedule Cost and schedule will be adversely affected by
an unusually large number of requirements
changes. The later in the life cycle requirements
changes occur, the greater the severity.

CRU Changes to functionality may require more re-
sources or cause allocations to be redistributed.
Have requirements changes increased utilization
measures?

Requirements Ensure that requirements changes are traced to
traceability design, code, and test cases. Requirements that

trace to many design elements will take more
time and effort to modify and test.

Design stability As requirements change, software units are mod-
ified, added, and deleted. Expect design “ insta-
bility” as a result of changing requirements. De-
sign stability not changing when requirements
are changing indicates a problem.

Breadth of testing Test cases should be run for changed/new re-
quirements. Does breadth of testing data reflect
the changed/new requirements?

Development Changing requirements may slow development
progress progress.

f. Tailoring.
(1) Another useful display for this metric is the effect of require-

ments changes on the code. This can be seen by plotting the percent,
or number, of SLOC changed over time.

(2) Function points could be tracked rather than SLOC.
(3) Requirements stability metric tailoring should consider the

criticality of individual requirements and units. For example, if user
r e q u i r e m e n t s a r e p r i o r i t i z e d , t a i l o r i n g m i g h t c o n s i s t o f t r a c k i n g

changes made only to software requirements that implement priority
1, 2, and 3 user requirements.

10–13. Design stability metric
a. Description. This metric is composed of two measures. The

design stability measure tracks changes made to the design of the
software. The design progress measure shows how the completeness
of the design is advancing over time and provides a context for
viewing the design stability measure in relation to the total projected
design.

b. Application.
(1) Data collection and reporting. Begin tracking as code is

entered into configuration management and continue for each ver-
sion until completion. The recommended reporting frequency for
this metric is monthly.

(2) Preparation. Specific preparation steps are not needed for this
metric.

c. Data definitions. For each CSCI and each delivery/design ver-
sion collect—

(1) Date planned for design/delivery version completion.
(2) M = Number of units in current delivery/design.
(3) F c = Number of units in current delivery/design that include

design related changes from previous delivery.
(4) F a = Number of units in current delivery/design that are

additions to previous delivery.
(5) F d = Number of units in previous delivery/design that have

been deleted.
(6) T = Total number of units projected for system.
d. Presentation and analysis.

64 DA PAM 73–7 • 25 July 1997

(1) Plotting the calculated design stability (S) and design prog-
ress (DP) values over time as in figure 10–13 is a recommended
display. Table 10–8 has the formulas for the two design measures.

Table 10–8
How to compute design stability measures

Formula Where

S = [M – (F a + F c + F d)] / M S = design stability measure
DP = M/T DP = design progress measure

(2) Although not indicated in figure 10–13, it is possible for
design stability to be a negative value. This may indicate that every-
thing previously delivered has been changed and more units have
been added. If the current delivery contains fewer units than the
previous one, a negative value indicates that the number of units
deleted or changed from the previous baseline was greater than the
total number of units in the current delivery.

(3) If some units in the current delivery are to be deleted from
the final delivery, it is possible for design progress to be greater
than one.

e. Management information.
(1) The design stability measure depicts how much of a software

delivery, or version, is comprised of pieces reused without modifica-
tion from the previous delivery or version. The closer this value is
to one, the higher the amount of reuse.

(2) The design stability measure should be monitored to deter-
mine the number and potential impact of design changes, additions,
and deletions on the software configuration. The trend of the meas-
ure over time indicates the software design is approaching a stable
state when the curve levels off at a value approaching one. In
addition to a high value and level curve, the following other charac-
teristics of the software should be exhibited:

(a) The development progress metric is high.
(b) Requirements stability is high.
(c) Depth of testing is high.
(d) The fault profile curve has leveled off and most software

problem/change reports have been closed.
(3) T h e h i g h e r t h e d e s i g n s t a b i l i t y m e a s u r e , t h e b e t t e r t h e

chances of a stable software configuration. However, a value close

to one is not necessarily good unless M is close to the total number
of units required in the system (design progress measure approach-
ing one), and the number of changes being counted are relatively
small and diminishing over time. Periods of inactivity could be
mistaken for stability.

(4) When design changes are being made to the software, the
impact on previously completed testing must be assessed. Tests may
need to be redone and may require modifications to test data and
conditions.

(5) Allowance for exceptional behavior of this metric should be
made for the use of rapid prototyping. Prototyping, while possibly
causing lower design stability numbers early in the program, should
reduce the number of design changes needed during later stages of
development.

(6) The PM should establish criteria to define what constitutes a
“ design change.” A design change implies change to the code for
specific reasons, not a change due to style or coding preferences, or
to add comments.

(7) Be aware that this metric does not measure the extent or
number of changes in a software unit nor the quality of its code.
Other metrics, such as complexity, can contribute to such an evalua-
tion. This metric also does not identify the specific units that are
being changed.

(8) The design stability metric can be used in conjunction with
the complexity metric to highlight changes to the most complex
units. It can also be used with the requirements metrics to highlight
changes to units which support the most critical user requirements.

(9) If tracking design stability for builds or increments, T will
likely be less than the total number of units projected for the sys-
tem, but will reflect the total projected for the build.

(10) The relation of design stability with other metrics is shown
in table 10–9.

f. Tailoring.
(1) Graphs of T and M over time are also useful. One would

expect the projected number of units at completion (T) not to vary
significantly from reporting period to reporting period with the ex-
ception of occasional replanning actions. Likewise, the number of
units in each successive delivery would not be expected to fluctuate
widely or to steadily decrease.

65DA PAM 73–7 • 25 July 1997

Figure 10-13. Sample design stability and design progress graph

(2) Defining any modification of code as a design change, re-
gardless of reason, may be easier to implement than monitoring only
design related changes, depending on the configuration management
tools being used.

Table 10–9
Design stability relation with other metrics

Metric Relation

Cost, Schedule Cost and Schedule will be adversely affected by
unusually large numbers of design changes.

CRU What is the impact on resource utilization of ad-
ding/modifying software units? Are target upper
bounds being approached or exceeded?

Requirements Everything implemented in the code should be
traceability traceable back to the documented design of a

unit, CSCI, and higher level specifications. Also,
have all requirements been implemented in the
code?

Complexity Compute the complexity values for new and
modified units. A steady growth in the proportion
of units with high complexity could indicate insuf-
ficient attention to applying good design and cod-
ing practices.

Breadth of testing If changes are a result of “ bug” fixes run regres-
sion tests to verify changes.

Depth of testing Obtain depth of testing data for new and modified
units.

Development Changing design may slow development prog-
progress ress.

10–14. Complexity metric
a. Description. The complexity metric provides a means to meas-

ure and evaluate the structure of software units. Software that is
more complex is harder to understand, test adequately and maintain.

Additionally, a highly complex unit is more likely to contain em-
bedded errors than a unit of lower complexity. The likelihood of
introducing errors when making code changes is higher in complex
units. The Army complexity metric allows selection from five dif-
ferent measures, as shown in table 10–10. Each measure captures a
different aspect of complexity.

b. Application.
(1) Data collection and reporting. Begin collecting McCabe’s

c y c l o m a t i c c o m p l e x i t y d u r i n g s o f t w a r e d e s i g n . B e g i n c o l l e c t i n g
other complexity measures as units are placed under the developer’s
configuration control. Recompute the complexity measures for units
after they are modified during development and PDSS. The recom-
mended reporting frequency for this metric is monthly.

(2) Preparation.
(a) Specific preparation steps are not needed for this metric.

Source code or program design language is the material examined
for determining complexity. Using automated tools to compute the
measures accurately and consistently is strongly recommended. A
brief discussion of each complexity measure follows.

(b) McCabe’s cyclomatic complexity is based on graph theory. It
is the number of independent control paths through a unit, from
entry point to exit point (also called basis paths). The lower the
number of independent paths means fewer tests are needed to exer-
c i s e a l l p o s s i b l e c o n t r o l s e q u e n c e s i n t h a t p i e c e o f s o f t w a r e .
C y c l o m a t i c c o m p l e x i t y i s c a l c u l a t e d w i t h t h e f o r m u l a i n t a b l e
10–11. An illustration of a flow graph and its cyclomatic complexity
derivation is shown in figure 10–14.

(c) The three Halstead measures included in the complexity met-
ric are expressions of program size based on the data manipulated in
a program (operands) and the operations performed with the data
(operators). The measures are calculated with the formulas in table

66 DA PAM 73–7 • 25 July 1997

10–12. The larger a unit’s size, more effort is needed to understand,
test, and maintain it.

Table 10–10
Measures comprising the complexity metric

Measure Quantifies the attribute(s) of

McCabe’s Relative degree of effort to test or maintain a
cyclomatic com- software unit (based on the number of ways con-
plexity trol could flow through the unit)
Halstead’s length, Relative degree of effort to test or maintain a
vocabulary and software unit (based on the amount of data and
volume number of operations performed on them)
Control flow “ Unstructured” changes in control flow through

the unit
Source lines of Size
code (SLOC)
Percent comment Understandability and maintainability
lines

Table 10–11
How to compute cyclomatic complexity

Formula Where

C = E − N + 2P C = the cyclomatic complexity
E = # of edges (program flows between nodes;
i.e., branches)
N = # of nodes (groups of sequential program
statements)
P = # of connected components (number of dis-
connected parts on a flow graph)

Table 10–12
How to compute Halstead size measures

Formula Where

v = n 1 + n 2 v = program vocabulary
n 1 = # distinct operators
n 2 = # distinct operands

L = N 1 + N 2 L = program length
N 1 = total # of occurrences of the operators
N 2 = total # occurrences of the operands

V = L(log 2v) V = program volume

Figure 10-14. Example flow graph and cyclomatic complexity

(d) The control flow measure counts the number of times control
paths cross in a unit. Control path crossings are also referred to as “
k n o t s . ” F o r e x a m p l e , a c o n d i t i o n a l G O T O s t a t e m e n t e m b e d d e d
within a standard structured control flow construct (for example,
WHILE, UNTIL, CASE) that sends control out of the construct
improperly would cause a knot to occur in a unit’s flow graph. The
control flow value for figure 10–14 is zero.

(e) The SLOC size measure is the number of lines of code (LOC)
in a unit. Lines of code are defined as non-comment, non-blank,
executable, and data statements. Source LOC refers to code which is
written and maintained by programmers.

(f) T h e p e r c e n t c o m m e n t l i n e s m e a s u r e s h o w s t h e r e l a t i v e
amount of explanatory material in a program compared to its size, in
lines. For the purposes of computation, blank lines are not consid-
ered comment lines. The percent comment lines for a software unit
is calculated as (C / T) * 100, where C = number of comment lines
and T = total number of non-blank lines in the unit.

c. Data definitions. The data to collect for this metric depends on
which of the five complexity measures are desired. The measures
are calculated at the unit level, where a unit is defined as the
smallest piece of testable code. For each software unit in each CSCI
collect—

67DA PAM 73–7 • 25 July 1997

(1) Programming language the unit is written in.
(2) For the McCabe’s cyclomatic complexity measure, the calcu-

lated value of cyclomatic complexity.
(3) For the Halstead measures, the calculated values of program

vocabulary, program length, and program volume.
(4) For the control flow measure, the number of control path

crossings.
(5) For the SLOC measure, the number of lines of code.
(6) For the percent comment lines measure, the calculated per-

centage of comment lines.
d . P r e s e n t a t i o n a n d a n a l y s i s . R e c o m m e n d e d d i s p l a y s f o r t h i s

metric allow comparing a program’s complexity with threshold val-
ues generally accepted as distinguishing complex software from

simpler software (see table 10–13). Figure 10–15 is a histogram of a
CSCI’s units distributed by cyclomatic complexity value.

Table 10–13
Thresholds to minimize complexity

Measure Suggested threshold per unit

McCabe’s cyclomatic complexity ≤ 10 for source code
≤ 7 for PDL

Halstead’s volume ≤ 3200
Control flow = 0
SLOC ≤ 200
Percent comment lines ≥ 60%

Figure 10-15. Sample cyclomatic complexity display

e. Management information.
(1) Automated tools are available for many programming lan-

guages and software development environments and should be used
to assist in computing the complexity measures.

(2) This metric applies throughout the software life cycle. Es-
tablishing a complexity threshold during development stimulates
structured programming techniques and limits the number of critical
paths in a program during design and unit implementation. Com-
plexity is used during software testing to identify basis paths, define
and prioritize the testing effort, and assess the completeness of unit
testing. During PDSS, proposed changes that would substantially
increase complexity should be examined closely, as they could also
increase testing effort and decrease maintainability.

(3) It is recommended that this metric be used as soon as it is
practical. It is highly desirable to limit the inherent complexity of
software during design and as code is being developed. Although
the metric provides valuable information, it should not be relied
upon as the sole metric to judge the quality of the design’s imple-
mentation. Chapter 5 lists test and CE activities used in conjunction
with design. Wherever possible, complexity should be computed for

PDL during the design activity. The suggested cyclomatic complex-
ity threshold for PDL is lower than the source code threshold to
allow for expected growth during unit implementation (see table
10–13).

(4) Complexity measures should be generated for each unit in the
system. They can be grouped for display in a number of ways (for
example, by CSCI, by individual unit, and so forth). Examining
complexity at various levels can provide indications of potential
problem areas. These indications give guidance to the developer on
areas where additional concentration is needed. The Government
can use complexity to find areas where test efforts should focus,
such as performing code walk-throughs, more comprehensive unit
level testing, or stress testing. While the majority of units in figure
10–15 have values less than or equal to ten, it can be seen that
several units have well exceeded this suggested threshold. These
units should be examined closely through testing and analysis.

(5) T h e r e a r e s e v e r a l e m b e d d e d a s s u m p t i o n s a n d k n o w n
weaknesses in the complexity measures. For example, in computing
McCabe’s cyclomatic complexity, there is no differentiation be-
tween different kinds of control flows. A CASE statement, which is

68 DA PAM 73–7 • 25 July 1997

easier to use and understand than a corresponding series of condi-
tional statements, makes a high contribution to cyclomatic complex-
ity. This is counterintuitive considering that the corresponding series
of IF...THEN...ELSE statements would be more trouble to test,
modify, and maintain. An exception to the cyclomatic threshold in
table 10–13 may be appropriate for large CASE statements where a
number of independent blocks follow the selection function. Further,
a million straight line instructions have the same cyclomatic com-
plexity as a single instruction. Using more than one complexity
m e a s u r e , h o w e v e r , c a n o f f s e t t h e s h o r t c o m i n g s o f a n y s i n g l e
measure.

(6) There are many ways of defining and counting lines of code.
The fairly simple definition (non-comment, non-blank, executable,
and data statements) is intended to apply somewhat equally across
the spectrum of procedural languages. The purpose of counting lines
of code in this metric, as well as in other metrics, is to indicate the
relative amounts of change in units as they are built and maintained,
as well as to indicate unit size.

(7) The percentage of comment lines is a language-dependent
measure. Some self-documenting languages require fewer comments
than an assembly language or a language like FORTRAN. Addition-
ally, the measure does not address the usefulness or completeness of
the comments.

(8) The complexity measures outlined here are oriented towards
procedural programming languages. They are appropriate for similar
procedural environments and the large volume of legacy code cur-
rently being maintained and enhanced. When applied to artificial
intelligence and pure object-oriented languages, however, use care
when interpreting the results. Additional complexity or design struc-
ture measures for languages like Ada (to measure the degree of
encapsulation, for example) can lend further insights into the soft-
ware structure and their use is encouraged.

(9) I n c a s e s w h e r e u n i t s h a v e a h i g h c y c l o m a t i c c o m p l e x i t y
(many independent control paths), various techniques exist to help
identify how complexity may be reduced. One method assesses the
unit’s actual complexity to identify control paths that cannot be
tested. This can occur when a program’s data flow and data condi-
tions at various decision points preclude control from ever taking
those paths. These sections are candidates for rewrite or elimination.
Another method examines essential complexity, a gauge of the use
of standard structured control constructs. These three types of com-
plexity and guidance on designing a minimum set of control path
tests are discussed in detail in National Bureau of Standards (NBS)
500–99.

(10) More than one complexity measure should be used because
each assesses a different complexity attribute (see table 10–10).

(11) Units planned for reuse should not be overly complex.
(12) Examining complexity trends over time can provide addi-

tional useful insights, especially when combined with other metrics
such as design stability or development progress. For example, late
software code “ patches” may cause the complexity of the patched
unit to exceed an acceptable limit, indicating that the design rather
than the code should have been changed. Test resources may be
better expended on units that have a relatively high structural com-
plexity rather than on units that will reflect a high number of lines
of code tested.

(13) The relation of complexity with other metrics is shown in
table 10–14.

Table 10–14
Complexity relation with other metrics

Metric Relation

Cost, Schedule Cost and Schedule will be adversely affected by
exceedingly complex code.

CRU If RAM target upper bounds are being ap-
proached or exceeded it may be necessary to
optimize the code (generally making it more com-
plex).

Table 10–14
Complexity relation with other metrics—Continued

Metric Relation

SEE Organizations with a higher SEE rating generally
develop less complex and easier to maintain
code.

Depth of testing Units with high complexity require more test re-
sources.

Fault profiles High complexity units may contain more faults.

f. Tailoring.
(1) Tailoring the amount of data collected for the complexity

metric should consider criticality of individual units. For example, if
user requirements are prioritized, tailoring might consist of tracking
cyclomatic complexity only for software units that implement prior-
ity 1, 2, and 3 user requirements, while collecting SLOC for all
units.

(2) SLOC has been retained as a measure of size and complexity
because of its long history of use and relative ease of computation,
especially for legacy systems. Other size measures, such as function
points, may be used, but it is recommended that they supplement
and not replace SLOC.

(3) The complexity measures in this metric do not address Ada
issues, such as parallelism, data abstractions (tasks and packages),
overloading, and generics. An Army manager may wish to collect
and monitor information flow measures in addition to control flow
measures.

(4) Cohesion and coupling are also valuable as complexity meas-
ures because they assess additional software design attributes such
as the type of relationships that exist between logical elements in
the same unit, and the relationships that exist between units, respec-
tively. These measures are particularly helpful in non-procedural
object-oriented implementations.

10–15. Breadth of testing metric
a. Description. Breadth of testing addresses the degree to which

required functionality has been successfully demonstrated as well as
the amount of testing that has been performed. This testing can be
described as “ black box” testing, since it is only concerned with
obtaining correct outputs as a result of prescribed inputs.

b. Application.
(1) Data collection and reporting. Data collection should begin

when any formal software testing is performed. The recommended
reporting frequency for this metric is monthly.

(2) Preparation. Test cases must be developed to demonstrate
specific requirements and assigned to test events, and test results
assessed before data can be meaningfully gathered for this metric.

c. Data definitions.
(1) For each CSCI, each formal test, and each requirement type

collect—
(a) Type of requirements tested and evaluated (such as SRS, IRS,

UFD).
(b) Total number of that type of requirement allocated to the

CSCI.
(c) Number of requirements tested with all planned test cases.
(d) Number of requirements successfully demonstrated.
(e) Test identification (for example, UAT, CSCI qualification tes-

ting, system qualification testing, DT, OT).
(f) Requirements priority or criticality, if any.
(2) The types of requirements in table 10–15 are recommended

for tracking with this metric.
(3) It is advised to track software requirements (SRS, IRS) tested

and passed through higher test levels beyond software qualification
tests.

(4) This metric does not track the test progress of individual
requirements. For that reason, it is advised that the “ number of
requirements” data items (para 10–15 c(1)(a)-(c)) be cumulative
values across tests.

69DA PAM 73–7 • 25 July 1997

d. Presentation and analysis.
(1) The requirements counts collected in the breadth of test met-

ric can be used to compute three different measures of testing

progress: one is a measure of test coverage, and two are measures of
test success as shown by table 10–16.

(2) All three test progress measures can be simultaneously dis-
played over key test events as shown in figure 10–16. It is recom-
mended that test coverage and test success values be displayed as
percentages by multiplying each value by 100.

Table 10–15
Recommended items for breadth of testing metric tracking

This type of requirement Typically elaborated/implemented in Prioritize by criticality

User requirements Users’ Functional Description (UFD), Operational Concept Description
(OCD)

Yes

System requirements System/Subsystem Specification (SSS), Interface Requirements
Specification (IRS)

Optional

Software requirements Software Requirements Specification (SRS), IRS Optional

Table 10–16
How to compute testing progress measures

Measure Formula Where Addresses

Test coverage R tested/R total R tested = # of requirements tested
R total = total # of requirements

How much of total was tested, without
regard to test success (extent of testing).

Test success R passed/R tested R passed = # of requirements passed How much of what was tested was
successful.

Overall success R passed/R total How much of the total was tested and
successful.

Figure 10-16. Sample testing progress graph

(3) Be aware that the test success measure is computed for a
different population of requirements than the other two measures,
test coverage and overall success. Therefore, test success may be
higher than test coverage when expressed in percent.

(4) It is possible, in some cases, that test coverage may never

reach 100 percent. This can occur if all documented requirements
are not demonstrated through tests, but are qualified by some other
means, such as inspection of source code for adequate commentary
for maintenance.

e. Management information.

70 DA PAM 73–7 • 25 July 1997

(1) The breadth of testing metric measures the quantity of testing
performed and achieved on documented requirements. While most
requirements are usually functional, the metric also captures the
results of performance, recovery, safety, security, adaptation, and
any other requirements imposed by the acquirer that can be demon-
strated through testing.

(2) The overall success measure provides insight into the level of
p r o g r e s s m a d e t o w a r d i m p l e m e n t i n g t h e a p p r o v e d r e q u i r e m e n t s
baseline.

(3) Any change in the software requirements baseline requires
recalculating the breadth of testing measures.

(4) Data should be collected throughout developmental test activ-
ities, if possible. Typically, breadth of testing is collected for CSCI
qualification testing and system-level tests.

(5) The breadth of testing metric should also be reported incorpo-
rating the results of Government tests, such as DT and OT, particu-
l a r l y i f t h e r e a r e r e q u i r e m e n t s t h a t c a n n o t b e a d e q u a t e l y
demonstrated prior to these system tests.

(6) The PMs should be aware of which software requirements
cannot be tested until late in the testing process, or if a software
function cannot be demonstrated at all prior to deployment.

(7) An innovative aspect of the Army’s UFD is the option to
assign a priority level to each user requirement to identify the most
important requirements to be implemented in the software. The
OCD, SSS, SRS, and IRS outlined in the consolidated software
standards of paragraph 2–2 d also discuss provisions for assigning
precedence or criticality values to requirements. Data for this metric
may be collected and reported separately for each requirements
priority level to provide more detailed visibility into which require-
ments are being tested.

(8) As requirements are added and deleted over time, the popula-
tion of total requirements also changes. This can cause the reported
breadth of testing measures to fluctuate for reporting periods when
no testing was performed.

(9) When changes are made to requirements or design, previous
test results for those areas are no longer valid. Until retesting and
re-evaluation of results occurs, the number of requirements tested
and number of requirements passed reported in breadth of testing
should drop by the number of requirements to be retested.

(10) Without clear criteria for test success, the breadth of testing
metric may not be effective, due to the subjectivity in assessing
whether a requirement has actually been satisfied.

(11) The relation of breadth of testing with other metrics is
shown in table 10–17.

f. Tailoring. Depending on how test success criteria are estab-
lished, failing only one test case may result in a requirement not
being successfully demonstrated. If sufficient resources exist, an
optional way to display breadth of testing is to report the percentage
of test cases performed and passed for each individual software
requirement. This procedure gives managers insight into the amount
of testing done on each requirement (assuming multiple test cases
exist for a requirement). This optional method of data collection and
reporting may be useful for especially critical requirements, but
impractical for all requirements due to cost considerations.

10–16. Depth of testing metric
a. Description. The depth of testing metric measures the amount

of testing achieved on the software architecture. That is, the extent
and success of testing the possible control and data paths and condi-
tions within the software. This testing is often described as“ white
b o x ” t e s t i n g , s i n c e t h e r e i s v i s i b i l i t y i n t o h o w t h e s o f t w a r e i s
constructed.

b. Application.
(1) Data collection and reporting. Begin collecting data at the

time that a configuration controlled code baseline is available for
unit testing. This metric should also be reported to reflect regression
testing as changes occur in the baseline during development and

PDSS. The recommended reporting frequency for this metric is
monthly.

Table 10–17
Breadth of testing relation with other metrics

Metric Relation

Cost, Schedule Cost and Schedule will be adversely affected by
an unusually large number of problems un-
covered in testing.

Requirements During PDSS, the breadth of testing metric
traceability should be used with the requirements traceability

metric to measure the level of regression testing
needed.

Requirements Changes in requirements require test cases to be
stability modified or developed. Previous test results for

changed requirements are no longer valid; tests
should be rerun and breadth of testing recalcu-
lated.

Design stability Changes in design driven by derived require-
ments require test cases to be modified or
developed. Previous test results for areas
changed are no longer valid; tests should be re-
run and breadth of testing recalculated.

Complexity CSCIs and systems comprised of many units
with high cyclomatic or Halstead volume com-
plexities will likely take longer to pass all their al-
located requirements due to the greater number
of test cases needed to adequately demonstrate
the requirements.

Fault profiles As faults are closed, subsequent retesting should
show breadth of testing improving in test suc-
cess.

Reliability Low values for breadth of testing at fielding in-
crease the risk of software reliability problems.

(2) Preparation. Four different attributes of software structure
can be monitored by this metric. Selection of which of the four
attributes to track, development of test cases to demonstrate them,
assignment of specific tests to test events, and evaluation of test
results need to occur before data can be meaningfully gathered for
this metric. The four depth attributes and criteria for success are
listed in table 10–18.

(3) As defined in the complexity metric, a path is a logical
traversal of a unit from an entry point to an exit point, following a
combination of edges and nodes. An edge is a program control flow
between nodes. Nodes are groups of sequential program statements.

(4) The statement attribute pertains to executable statements only.
(5) Each decision point which contains an “ or” statement should

be tested at least once for each of the condition’s logical predicates.
c. Data definitions.
(1) For each unit in each CSCI, and each software depth attribute

monitored, collect—
(a) Name of the depth attribute.
(b) Total number of attribute occurrences.
(c) Number of occurrences executed at least once.
(d) Number of occurrences successfully executed at least once.
(2) It is recommended to track at least paths, statements and

inputs with this metric.
d. Presentation and analysis.
(1) The attribute counts collected in the depth of testing metric

can be used to compute two measures of testing progress: one is a
measure of test coverage, and the other is a measure of test success
as shown by table 10–19.

(2) The recommended display for this metric is a plot of test
coverage and overall success for a depth attribute over time, ex-
pressed in percent, as depicted in figure 10–17.

71DA PAM 73–7 • 25 July 1997

Table 10–18
Software structure attributes measured by the depth of testing metric

Attribute Success criteria Recommended for
routine tracking

Path Path is successfully executed at least once Yes
Statement Statement is successfully executed at least once Yes
Input Input is successfully tested with at least one legal entry and one illegal entry 1, 2 Yes
Decision point Decision point is successfully exercised with all classes of legal conditions as well as

one illegal condition 2
Optional

Notes:
1 An entry should be selected from every field of every input parameter.
2 Successful test of an illegal entry or illegal condition means unplanned or undesirable results do not occur.

Table 10–19
How to compute test progress measures for depth attributes

Measure Formula

Test coverage Number of attribute occurrences tested

Total number of occurrences of the attribute
Overall success 1 Number of attribute occurrences passed

Total number of occurrences of the attribute

Notes:
1 Overall success is also termed path measure, statement measure, domain
measure and decision point measure for path, statement, input, and decision at-
tributes, respectively.

e. Management information.
(1) The depth of testing metric provides information on the integ-

rity of the software design, including the relationship between the
paths, statements, inputs, and decision points of the software.

(2) The depth measures discussed here do not assess the“ cor-
rectness” of design or code. It is expected that unit tests and unit
integration and testing will make use of test cases that demonstrate
code is designed properly. These cases should be supplemented by
other cases to yield coverage and success measures that provide
satisfactory confidence that unexpected control or data conditions
will not occur. Software test programs usually require that software
structure is successfully demonstrated only after passing some “
realistic” number of test cases, under both representative and maxi-
mum stress loads. It is understood that fully exhaustive testing of all
control and data combinations is prohibitive.

(3) Because illegal inputs are used, the domain measure provides
an indication of the robustness of the software design.

(4) Some judgment is required to interpret the domain measure
because it is unlikely that the program will be subjected to all
possible input streams. However, the domain measure is important
because most faults appear at domain boundaries.

(5) The relation of depth of testing with other metrics is shown in
table 10–20.

f. Tailoring.
(1) The recommended data definitions for this metric are collec-

ted for each unit. However, data may also be collected at the CSCI
or system level if adequate test tools are available.

(2) Depth of testing data collection should be tailored to consider
the effort to collect data. These guidelines are suggested:

(a) Always compute the domain measure (inputs).
(b) Always compute the path and statement measures over the set

of basis paths (see complexity metric, para 10–14), on units that
implement high priority requirements, or if a unit’s complexity val-
ues exceed established thresholds.

(c) Compute more comprehensive path and statement measures if
automated tools are available.

Table 10–20
Depth of testing relation with other metrics

Metric Relation

Cost, Schedule Cost and Schedule will be adversely affected by
unusually large numbers of problems uncovered
in unit test.

SEE Organizations with maturity rating of 1 may not
have well-established procedures for ’white-box’
testing.

Requirements Changes in requirements or design may lead to
stability, Design modifying code or developing new code. Previ-
stability ous test results for changes are no longer valid;

tests should be rerun and depth of testing recal-
culated.

Complexity Structural testing of a unit with high cyclomatic or
Halstead volume complexity will take longer than
one of lesser complexity due to the greater num-
ber of control and data paths through the unit.
Units of highest complexity should be designated
for early and more thorough testing.

Breadth of testing Units with low depth coverage measures may
cause breadth measures to be low as well.

Fault profiles Low values of overall success should correlate
with software errors reported in the fault profiles
metric.

Reliability Low values for the depth of testing metric in-
crease the risk of software reliability problems.

10–17. Fault profiles metric
a. Description. The fault profiles metric is a summary of soft-

ware problem/change report (PCR) data collected by the corrective
action system as described in chapter 8. This metric provides insight
into the number and type of deficiencies in the current software
baseline, as well as the developer’s ability to fix known faults.

b. Application.
(1) Data collection and reporting. Collection begins early in the

software life cycle when the first software product, usually a re-
q u i r e m e n t s d e f i n i t i o n d o c u m e n t , h a s b e e n a p p r o v e d a n d p l a c e d
under configuration control. Continue to collect fault profiles data
for the life of the program. The recommended reporting frequency
for this metric is monthly.

(2) Preparation. A corrective action system is the source of prob-
lem/change report, or fault, information for this metric. Chapter 2
provides a method for uniformly prioritizing and categorizing prob-
lems and changes. In order to compute the age of faults, individual
faults need to be tracked by the corrective action system, with the
dates of problem start and problem closure recorded.

c. Data definitions.
(1) For each CSCI, each fault priority, and each fault category,

collect—
(a) Cumulative number of faults detected.
(b) Cumulative number of faults closed.

72 DA PAM 73–7 • 25 July 1997

(c) Average age of open faults.
(d) Average age of closed faults, which is the same as average

time to close.
(e) Average age of all faults.
(2) Average ages can be computed using the formulas in table

10–21.
d. Presentation and analysis. The displays discussed here can be

o r g a n i z e d b y a n y d e s i r e d g r o u p i n g o f f a u l t p r i o r i t i e s a n d f a u l t
categories.

(1) Fault history.
(a) History to date. A common display of fault profiles metric

data is shown in figure 10–18 as the cumulative numbers of soft-
ware faults detected (problem reports opened) and closed, over time.
Cumulative fault history displays often show large differences be-
tween reporting periods, appearing as “ steps” in the curves. A large

number of faults may be opened in a particular month, due to faults
observed during a formal review, software audit, or test. Conversely,
a cleanup period prior to a major test or software fielding release
may show a large number of problems closed.

(b) Detailed detection/resolution history. An alternate display of
corrective action activity is to plot the number of problem/change
reports that were opened and the number closed over periodic inter-
vals, such as months. Figure 10–19 is an example of monthly PCR
opening and closure activity for one CSCI.

(2) Average age of software faults. Average fault age can be
plotted over time to expose trends in fault resolution. Fault age
graphs can indicate which CSCIs and which problem priorities are
the most troublesome with respect to fixing faults. Figure 10–20 is a
graph of the average length of time a fault not yet resolved has been
in the corrective action system.

Table 10–21
How to compute average fault ages

Average age of Formula Where

Open faults only D open/Faults open D open = the sum of the days between the time each
open fault was detected and the current
date

Faults open = total # of open faults

Closed faults only D closed/Faults closed D closed = total # of days all closed faults remained
open

Faults closed = total # of closed faults

All faults (open and closed) D open/Faults total Faults total total # of open and closed faults

Figure 10-17. Sample depth of testing graph of statement measure

73DA PAM 73–7 • 25 July 1997

Figure 10-18. Sample graph of software problem history

Figure 10-19. Example of monthly PCR activity

74 DA PAM 73–7 • 25 July 1997

Figure 10-20. Sample graph of average age of open faults

e. Management information.
(1) Fault counts should be based on all tests and evaluations on a

formal baseline which is under configuration control. Results of
i n f o r m a l t e s t - f i x - t e s t p e r f o r m e d a t t h e u n i t l e v e l s h o u l d n o t b e
counted.

(2) The gap between open and closed faults should be closely
monitored. A constant gap or a continuing divergence is reason for
the user representative to take appropriate action, especially when
approaching a key test or milestone.

(3) Inadequate problem resolution by the developer can cause the
cumulative number of closed faults to remain constant over time,
and a number of faults will remain open. The age of the open faults
should be checked to see if they have been open for an unreasonable
period of time. Those faults which are not resolved represent an
increased risk. Managers should identify the reason that faults are
not closed and take corrective action.

(4) Managers should be aware of the cumulative effect of a large
number of low priority faults. Too many minor problems may im-
pair overall system operation or successful test conduct. PMs may
wish to establish thresholds to limit the cumulative effects of un-
resolved priority three and lower faults on cost or ability to operate
the system effectively

(5) Army policy for the acceptable numbers of open software
faults prior to certification of readiness for dedicated operational
testing is outlined in section VIII of chapter 6. At a minimum, all
priority one and two faults must be closed.

(6) The PM should establish a clear description of when a fault is
considered discovered and closed. Criteria for the date discovered
may be the date on which the original problem report was written,
or when the report was entered into the corrective action system.
Criteria for the date closed should reflect the CCB’s judgement that
regression testing was adequate and applicable documentation is
updated. Differences in defining corrective action event dates can
significantly influence the average ages reported via this metric.

(7) Average age graphs can track whether the time to close faults
is increasing over time. Increasing time to close faults may indicate

that the developer is not allocating adequate resources to correcting
problems, or that some faults are exceedingly difficult to fix.

(8) Large deviations of individual faults from the average age of
all faults should be investigated. The average open age of high-
priority faults should also be examined with respect to the time
remaining to the next major test or milestone.

(9) Examining the categories of software faults can provide in-
sight into the underlying problems. During the early stages of soft-
ware development, the fault profiles metric reports the quality of
translating software requirements into the design. Design faults sug-
gest that requirements were not defined correctly, or that they are
being misunderstood by the developer. Later, the fault profiles met-
ric measures the implementation of requirements and design into
code, assuming an adequate level of testing is performed. Code
faults could result from an inadequate design, or a poor job of
implementing the design into code. Examining the fault categories
to determine causal relationships should be performed in any analy-
sis of fault profiles. Be aware that a single fault may be assigned to
one or more categories.

(10) The PM should understand any fault or “ bug” tracking tools
u s e d b y t h e d e v e l o p e r f o r t r a c k i n g f a u l t p r o f i l e s d a t a . T h e
developer’s system for collecting problem reports should be re-
viewed early in the program to determine how much of a difference
there is between the recommended data definitions above and the
definitions used by the tool.

(11) The PM should establish criteria to determine when a fix
must be validated and by whom (Government or developer SQA).

(12) The PM should examine the following issues which are not
reported in the fault profiles data:

(a) Time/cost of correction. The cost and time to correct a fault is
not directly linked with the fault’s priority. Priority one faults may
be caused by trivial errors in syntax, while priority four faults may
require a redesign.

(b) Problem description/prioritization is not always obvious. For
example, a single character error in a source statement which leads
to an improperly executed function. Interpretations of problem and
priority may be different depending on whether the cause or effect

75DA PAM 73–7 • 25 July 1997

is emphasized. Priorities in table 2–4 are fairly straightforward. The
method for determining fault categories and defining fault priorities
is not as important as applying the definitions consistently.

(c) Category of fault. Faults in requirements are often the most
expensive and persist the longest. These faults may not be detected
until the software is used on site. Design faults could be related to
processing or control flow. If these faults persist past unit-level
testing, check inputs tested as reported in the breadth of testing
metric. Control and sequence faults in code may include missing
paths, unreadable code, loop termination criteria incorrect, uncon-
trolled GOTOs, spaghetti code (old COBOL). These faults are often
caught with path testing. If many of these types of faults persist past
unit testing, check the depth of testing metric for completeness.

(13) The fault profiles displays do not identify which individual
faults persist over time. The developer’s corrective action system
may identify the software unit related to a fault to indicate product
status. With unit identifiers, it may be possible to identify problem
units and combine analysis with other metrics for a more complete
diagnosis.

(14) When interpreting fault profiles data be aware that error
detection is closely tied to the quality of the development and
testing process. A low number of detected faults could indicate
either good process management with good products, or a process
with an inadequate amount or improper type of testing. Fault pro-
files metric data should not be evaluated without also considering
measures of test coverage. For example, a plot of code category
faults could be evaluated against the amount of testing which was
done in each month. The relationship of code faults to test coverage
can be used to gauge the maturity of software and the adequacy of
the test program.

(15) Reliability models can be used to forecast the rate additional
faults will be discovered based on previous error detection history.

(16) The relation of fault profiles with other metrics is shown in
table 10–22.

f. Tailoring.
(1) The PM may want to track fault profiles more frequently than

monthly during periods of heavy testing.
(2) It may be desirable to collect and report fault profiles data at

the unit level for particularly complex, critical, or error-prone items.
(3) The test in which a fault was discovered can supplement the

data for fault profiles metric (internal vs. Government, formal vs.
informal).

10–18. Reliability metric
a. Description. The reliability metric assesses two aspects of soft-

ware’s ability to perform as intended. One set of measures expresses
software’s contribution to system mission reliability. System failures
caused by software and the time it takes to restore the system to its
previous operating condition after these failures occur are tracked.
The other set of measures track summary data obtained from ana-
lytic models of reliability. Using data from the fault profiles metric,
corrective action system, and test history, reliability models can
project future failures as a function of test time (such as time to next
failure or failure rate) and to project the number of latent, or as yet
unobserved, faults remaining in a software baseline. These projec-
tions can be used to gauge how much testing will be enough to have
confidence that critical faults will be within acceptable limits when
the software is fielded.

b. Application.
(1) Data collection and reporting.
(a) Begin collecting the measures dealing with system failures

caused by software during formal system-level tests, and continue
through PDSS. The recommended reporting frequency for this infor-
mation is monthly prior to deployment and as needed after fielding
to reflect reported system failures. The system must be used under
typical operating conditions for reliability data to be meaningful.

(b) Begin collecting software reliability model data during unit
testing. The recommended reporting frequency for this information
is monthly.

(2) Preparation.

(a) S o f t w a r e c o n t r i b u t i o n t o s y s t e m m i s s i o n r e l i a b i l i t y . U s i n g
fault profiles metric data, TIRs, and failure definition/scoring crite-
ria (FD/SC) from the RRR, software analysts, and system RAM
analysts need to mutually define and compute the items in table
10–23. Derive these items only when the software is used in accord-
ance with its OMS/MP. Definitions and algorithms can be found in
DA Pam 73–8.

Table 10–22
Fault profiles relation with other metrics

Metric Relation

Cost, Schedule Cost and Schedule will be adversely affected by
unusually large numbers of software problems/
changes. The later in the life cycle serious prob-
lems occur, the greater the affect’s severity.

CRU Problem reports may indicate computer resource
capacity problems.

SEE Developers with high SEE ratings should be ex-
pected to have superior problem reporting sys-
tems and low average ages of open faults.

Requirements Do test cases exist for each requirement that has
traceability been modified to correct a fault?
Requirements A high number of requirements faults should
stability generate a high level of requirements changes

as the faults are fixed.
Design stability Additional testing must be performed on new and

changed units, possibly increasing the number of
reported faults.

Complexity High-complexity units often contain more faults.
Ensure the test coverage for these units is high.

Breadth of testing The number of faults discovered should be com-
pared to the number of software requirements
tested. Many faults with low coverage is un-
desirable.

Depth of testing The number of faults discovered should be com-
pared to the percentage of inputs, paths, and
statements that have been tested. Many faults
with low coverage is undesirable.

Reliability Unresolved or unobserved faults in the software
baseline may cause system reliability problems.
Reliability models can be used to forecast the
rate additional faults will be discovered.

Table 10–23
Computed items for software/system reliability tracking

Item Description

1. The point estimate of mean time between mission failures
caused by system hardware or software as measured during
the test event.

2. The 80 percent lower confidence bound value of mean time be-
tween mission failures caused by system hardware or software.

3. The point estimate of mean time between mission failures
caused by software as measured during the test event.

4. The 80 percent lower confidence bound value of mean time be-
tween mission failures caused by software.

5. The mean time to restore the system to the operational condi-
tion existing before the failure, after a software-caused system
failure has occurred.

6. The median time to restore the system to the operational condi-
tion existing before the failure, after a software-caused system
failure has occurred.

7. The maximum 95th percentile value of time to restore the sys-
tem to the operational condition existing before the failure, after
a software-caused system failure has occurred.

(b) Software reliability modeling. In order to derive a predicted
software failure rate and an estimate of latent software faults re-
quires selecting an appropriate reliability model. Selecting a model
is based on: the length of the test, how a software failure is defined,
the adequacy of the operational profile, as well as the assumptions

76 DA PAM 73–7 • 25 July 1997

underlying the use of each model. After choosing an analytical
model, it is important to determine how closely the past predictions
from that particular model for a particular data set reflect the actual
behavior observed for that data set. Various statistical and qualita-
tive methods can be employed to determine the degree of com-
monality between the two data sets. If the selected model is not an
accurate reflection of the actual behavior then apply other models
until a good fit is achieved. The most comprehensive collection of
reliability prediction models is available in the Statistical Modeling
and Estimation of Reliability Functions for Software (SMERFS)
software package developed by the Government (see NSWCDD
84–373). Other software tools are also provided within SMERFS to
compare a model’s prediction of the behavior of a software applica-
tion with the actual behavior of that software. Software faults used
as input to the analytical models are described in the fault profiles
metric, paragraph 10–17.

c. Data definitions.
(1) Software contribution to system mission reliability. For each

system-level test event collect—
(a) Test identification.
(b) The required value of system Mean Time Between Mission

Failure (MTBF).

(c) The required values for mean, median, and maximum 95th
percentile mean time to restore the system to operational status.

(d) The items in table 10–23.
(2) Software reliability modeling. For each reporting period and

each reliability model used, collect—
(a) Test identification.
(b) Name of the reliability model used.
(c) The software failure rate objective, such as desired goal for

an acceptable number of software failures per month.
(d) The measured (actual) failure rate computed over the test

period.
(e) The projected failure rate determined by the reliability model

for the test period.
d. Presentation and analysis.
(1) F i g u r e 1 0 – 2 1 s h o w s c o m p u t e d p o i n t e s t i m a t e s o f s y s t e m

mean time between mission failures, the required MTBF and associ-
ated 80 percent lower confidence bound plotted over time. A recom-
mended display for mean time to restore system to operational
status, also plotted over time, is shown in figure 10–22.

(2) Figure 10–23 is a display of software reliability model projec-
tion showing a steadily decreasing rate of software failures.

Figure 10-21. Sample graph of system mean time between mission failures

77DA PAM 73–7 • 25 July 1997

Figure 10-22. Sample graph of mean time to restore system

Figure 10-23. Sample graph of reliability model projection

e. Management information.
(1) The following information applies to calculating the contribu-

tion of software to system mission reliability.
(a) The user representative defines when the system is down in

the system’s FD/SC. Often, the system is characterized as down

when it cannot perform specific critical functions or when a percent-
age of workstations or printers in the work area are not functioning.

(b) The system must be used under typical operating conditions
for observed system mission reliability data to be meaningful. The
s y s t e m ’ s o p e r a t i n g c o n d i t i o n s a r e d o c u m e n t e d i n t h e O M S / M P .

78 DA PAM 73–7 • 25 July 1997

When measured under these conditions, the reliability metric esti-
mates how often one can expect the software to cause system fail-
ures in a field environment.

(c) Check reliability point estimates as each failure is encoun-
tered in DT to determine if the trend is moving towards the system’s
required reliability value. The PM should consider delaying OT
until the computed MTBF is greater than the lower 80 percent
confidence bound.

(2) Use the fault profiles metric to compare trends in the types of
faults occurring and their rates of closure to projections software
error populations and/or expected software failure rates.

(3) The PM should use reliability projections to gauge how much
testing will be enough. These projections can be based on either
system failures due to software or fault profiles.

(4) The relation of reliability with other metrics is shown in table
10–24.

Table 10–24
Reliability relation with other metrics

Metric Relation

Cost, Schedule Cost and Schedule will be adversely affected by
unusually large numbers of system failures. The
later in the life cycle a failure occurs, the greater
the failure’s severity.

CRU Capacity shortages may lead to system failures.
SEE A developer with a higher SEE rating is more

likely to do reliability modeling.
Requirements Many software ’failures’ are actually the result of
traceability system or user requirements which were not im-

plemented in the final software code. Verify that
traces are complete from requirements to code.

Breadth of testing The reliability metric can be used to estimate the
number of residual errors in the code and
amount of additional system-level testing re-
quired.

Fault profiles The data needed to compute fault profiles can be
used for reliability measures.

f. Tailoring.
(1) Some user representatives would rather specify the opera-

tional availability (A o) for their system, instead of MTBF. Ao is
the percentage of time the system is either operating or is capable of
operating. The data definitions for MTBF can be adjusted to reflect
A o.

(2) When tailoring, consider the criticality of the software in the
system. Tracking MTBF is more appropriate for safety-critical sys-
tems. Ao is more appropriate for systems which can be safely shut
down to resolve intermittent problems.

(3) Creating realistic operational conditions during pre-deploy-
ment testing can be expensive. Tracking reliability is easier during
PDSS.

(4) When tailoring, consider the level of data necessary for each
computed reliability item (see table 10-23).

(5) Collecting and reporting the estimated number of residual, or
latent, faults may be desirable for systems that are highly critical or
will be deployed for many years.

10–19. Manpower metric
a . D e s c r i p t i o n . T h i s m e t r i c p r o v i d e s a n i n d i c a t i o n o f t h e

developer’s application of human resources to the development pro-
gram and ability to maintain sufficient staffing to complete the
project. The manpower metric is composed of two parts: an effort
measure monitors labor hours planned and expended, while a staff-
ing measure accounts for quantity and types of personnel needed to
do the work. This metric assists the Government in determining
whether the developer has scheduled a sufficient number of employ-
ees to produce the product in the time and budget allotted.

b. Application.
(1) Data collection and reporting. Track for entire length of

development and PDSS. The recommended reporting frequency for
this metric is monthly.

(2) Preparation. The manpower metric reports the labor staffing
in a software project. These elements include the planned level of
effort, the actual level of effort, and the losses in the software staff
measured by labor category. Anticipated effort and staffing profiles
are derived from planning documents, usually the developer’s pro-
posal, software development plan or CRLCMP.

c. Data definitions. For each CSCI, labor category, and experi-
ence level tracked, collect—

(1) Labor category.
(2) Experience level (experienced, special, total).
(3) Number of personnel planned to be on staff for the reporting

period.
(4) Number of personnel actually on staff in the reporting period.
(5) Number of unplanned losses in personnel that occurred.
(6) Number of labor hours planned to be expended in the report-

ing period (cumulative).
(7) Number of labor hours actually expended in the reporting

period (cumulative).
d. Presentation and analysis. The primary information obtained

from the manpower metric is derived by comparing planned and
actual levels of effort and personnel. Figure 10-24 depicts the effort
measure for an entire system for all labor categories over time.
Figure 10-25 is an example of a staffing profile. Displays can be
organized by CSCI or individual labor category for more detailed
analysis.

79DA PAM 73–7 • 25 July 1997

Figure 10-24. Sample graph of manpower effort measure

Figure 10-25. Sample graph of manpower staffing profile

e. Management information.
(1) Software staff includes those engineering and management

personnel directly involved with any software activity. Losses and
gains for each labor category should be tracked to indicate potential
problem areas. High turnover of key and experienced personnel can

adversely affect project success. Adding many unplanned personnel
late in the development process may indicate impending problems.

(2) Significant deviations from planned staffing levels may indi-
cate problems in the developer’s management procedures or prob-
lems in product quality that require additional effort to repair.

80 DA PAM 73–7 • 25 July 1997

(3) The shape of the staffing profile curve tends to start at a
moderate level at the beginning of a project, grow through design,
peak at implementation and testing and diminish near the comple-
tion of integration testing. Individual labor categories, however, are
likely to peak at different points in the life cycle. Any significant
deviation between actual and planned values should be investigated
to determine the cause. During PDSS, the staffing curve is typically
flatter.

(4) The manpower metric is used primarily for project manage-
ment and does not necessarily have a direct relationship with other
technical and maturity metrics. For example, growth in number of
personnel is not necessarily reflected by an increase in product
quality.

(5) The relation of manpower with other metrics is shown in
table 10-25.

Table 10–25
Manpower relation with other metrics

Metric Relation

Cost, Schedule Manpower is a primary driver of cost and sched-
ule.

SEE Developers with higher SEE ratings should be
less sensitive to personnel turnover.

Requirements Effort in analysis and test design should increase
stability in response to significant requirements changes

to provide additional support for modifying re-
quirements and associated tests.

Design stability Design and implementation effort should grow in
response to significant design changes to provide
additional support for design and code changes.

Fault profiles Effort in areas affected by faults should increase
in response to significant increases in the num-
ber of new faults to provide additional support to
fix the problems.

Development Significant changes in staffing or effort allocation
progress will likely be reflected by changes in planned

and/or actual levels of development progress.

f. Tailoring. Depending on the planned level of maintenance, it
may be expedient to collect and report the manpower metric only at
the system level during PDSS, rather than by CSCI.

10–20. Development progress metric
a. Description. The development progress metric measures the

degree of completeness of the software development effort, indicat-
ing the readiness to proceed to subsequent activities in software
development.

b. Application.
(1) Data collection and reporting. Begin collecting during soft-

ware requirements analysis and continue throughout software devel-
opment and PDSS. The recommended reporting frequency for this
metric is monthly.

(2) Preparation. Schedules for software unit development, test,
and integration are needed.

c. Data definitions.
(1) For each CSCI collect—
(a) Number of software units in the CSCI.
(b) Number of units planned and actual number of units fully

designed and reviewed by the Government (cumulative).
(c) Number of units planned and actual number of units fully

coded and successfully unit tested (cumulative).
(d) Number of units planned and actual number of units fully

integrated into the CSCI (cumulative).
(2) “ Successfully” tested is defined as completing all test cases

(required test coverage) with no defects.“ Integrated” is defined as

being actually and logically connected (in a static sense) with all
required units. Dynamic tasking is not considered when determining
if units are integrated.

d. Presentation and analysis. The basic information obtained by
the development progress metric is derived by comparing planned to
actual quantities of software units that have completed various steps
in the development process over time. Typically, degrees of design,
implementation, and test are tracked. A sample display of develop-
ment progress is shown in figure 10–26. To enhance readability, it
is recommended to plot the planned and actual numbers of units as
percentages of the total number of units.

e. Management information.
(1) The three development steps at which counts of units are

taken in this metric are for those units that have completed the
software design, software implementation and unit test, and unit
integration and testing activities.

(2) D e s i g n , c o d i n g a n d u n i t t e s t i n g , a n d i n t e g r a t i o n o f u n i t s
should progress at a reasonable rate. Examining the progress in
these three categories versus what was originally planned can indi-
cate potential problems with schedule and cost.

(3) In certain instances, consideration should be given to a possi-
ble re-baseline of the software, such as in an evolutionary approach.
That is, development progress may appear to suddenly degrade
because the overall set of requirements (and projected number of
total units) has been expanded to cover another evolution of user
requirements. You can simply add to the total number of units due
to changes in the requirements or begin tracking the newer evolution
or build separately. In either case, all other metrics would need to
reflect the re-baseline as well.

(4) You cannot judge whether the objectives of the development
plan can be achieved using only the development progress metric.
The testing metrics are needed as well.

(5) The relation of development progress with other metrics is
shown in table 10–26.

Table 10–26
Development progress relation with other metrics

Metric Relation

Cost, Schedule Cost and Schedule will be adversely affected by
significant delays shown by development prog-
ress.

CRU Are any target upper bounds being approached
or capacities exceeded as more units are inte-
grated?

Requirements Are units that implement critical or high priority
traceability user functions progressing as expected?
Requirements Development progress measures should de-
stability crease in response to significant requirements

changes as units undergo redesign and retest or
new units are added to the total.

Complexity Are highly complex units progressing through the
development activities at a reasonable rate?

Depth of testing Are depth measure coverages reasonable for
units that have completed unit testing?

Fault profiles Progress may lag behind plan if unusually large
numbers of problems are being corrected. Con-
versely, reasonable progress with many out-
standing faults may indicate corrective action is
not occurring.

Manpower Are delays in progress due to insufficient staffing
or high turnover of personnel?

81DA PAM 73–7 • 25 July 1997

Figure 10-26. Sample graph of development progress

f. Tailoring.
(1) Use local data and local data formats as input to the calcula-

tions or as input to tools used for the calculations.
(2) Different data definitions may be more appropriate for soft-

ware engineering environments using object-oriented or fourth gen-
eration languages. Tracking the progress of objects, function points,
standard data elements, or other entities through comparable devel-
opment steps may be more meaningful.

(3) It may be worthwhile to define and track CSCI-level attrib-
utes with development progress, such as number of CSCIs that have

completed software qualification testing and number that have com-
pleted CSCI/HWCI integration, particularly for large systems or
those with many interfaces to other systems.

Section III
Relating Metrics to Management Issues

10–21. MAIS assessment illustration
Paragraph 8–9 discussed the requirements of DOD 5000.2–R and
quarterly status reporting. While the metrics in this chapter do not
fully address all the reporting issues, they can provide useful infor-
mation as part of the total program input for each assessment area.
Table 10–27 relates the Army metrics to each DOD issue.

Table 10–27
Metric correlation to MAIS status report requirements

MAIS assessment issue Assessment must address at least Contributing metric

Schedule and progress Completion of program milestones, significant events, and indi-
vidual work items

Cost, Schedule, Development progress

Growth and stability Stability of required functionality or capability, and the volume of
software delivered to provide required capability

Requirements traceability, Requirements
stability, Design stability, Complexity, Com-
puter resource utilization

Funding and personnel resources The balance between work to be performed and resources as-
signed and used

Cost, Manpower

Product quality The ability of delivered product to support the user’s need with-
out failure, and problems and errors discovered during testing
that result in the need for rework

Fault Profiles, Reliability, Complexity,
Breadth of testing, Depth of testing

Software development perform-
ance

The developer’s productivity capabilities relative to program
needs

Software Engineering Environment, Devel-
opment progress

Technical adequacy Software reuse, use of Ada for software development, and use
of approved standard data elements

Requirements traceability, Development
progress, Complexity

82 DA PAM 73–7 • 25 July 1997

Appendix A
References

Section I
Required Publications

AR 25–3
Army Life Cycle Management of Information Systems. (Cited in
paras 1–4, 3–5, 5–6, 5–8, 5–9.)

AR 70–1
Army Acquisition Policy. (Cited in paras 1–4, 4–6, 5–6, 5–9)

AR 73–1
Test and Evaluation Policy. (Cited in paras 1–1, 1–4, 1–6, 1–9,
1–10, 2–2, 3–2, 4–3, 5–8, 5–10, 6–39, 6–41, 6–46, 6–47, 6–54.)

AR 380–19
Information Systems Security. (Cited in para 3–2, 3–8.)

AR 700–142
Instructions for Materiel Release, Fielding, and Transfer. (Cited in
para 7–6, 7–11.)

DA Pam 70–3
Army Acquisition Procedures. (Cited in paras 4–6, 5–9.)

MIL–STD–498
Software Development and Documentation. (Cited in paras 1–13, 2–
2, 10–11.)

Section II
Related Publications
A related publication is merely a source of additional information.
The user does not have to read it to understand this publication.

AR 5–11
Modeling and Simulation

AR 40–60
Policies and Procedures for the Acquisition of Medical Materiel

AR 70–1
Systems Acquisition Policy and Procedures

AR 71–2
Basis of Issue Plans (BOIP) and Qualitative and Quantitative
Personnel Requirements Information (QQPRI)

AR 71–9
Materiel Objectives and Requirements

AR 385–16
System Safety Engineering and Management

AR 525–1
Strategic Systems

AR 602–2
Manpower and Personnel Integration (MANPRINT) in the Materiel
Acquisition Process

AR 700–127
Integrated Logistic Support

CMU/SEI–87–TR–23
A Method for Assessing the Software Engineering Capability of
Contractors

CMU/SEI–93–TR–24
Capability Maturity Model for Software (Version 1.1)

DA Pam 25–6
Configuration Management for Automated Information Systems

DA Pam 73–1
Test and Evaluation in Support of System Acquisition

DA Pam 73–2
Test and Evaluation Master Plan (TEMP) Format, Review and
Approval Procedures

DA Pam 73–3
Critical Operational Issues and Criteria (COIC) Procedures and
Guidelines

DA Pam 73–4
Developmental Test and Evaluation (DT&E) Guidelines

DA Pam 73–5
Operational Test and Evaluation (OT&E) Guidelines

DA Pam 73–8
Critical Elements in Support of Test and Evaluation

DA Pam 700–55
Instructions for Preparing the ILSP

DA Pam 700–142
Instructions for Materiel Release, Fielding, and Transfer

DOD 5000.2–R
Mandatory Procedures for Major Defense Acquisition Programs
(MDAPs) and Major Automated Information System (MAIS)
Acquisition Programs

DODD 3405.1
Computer Programming Language Policy

DODD 5000.1
Defense Acquisition

DODD 8000.1
Defense Information Management Program

DODI 7000.2
Cost/Schedule Control System Criteria

DOD–STD–2167A
Defense System Software Development

DOD–STD–7935A
DOD Automated Information System (AIS) Documentation
Standards

MIL–HDBK–881
Work Breakdown Structure for Defense Materiel Items

MIL–HDBK–245C
Preparation of Statement of Work (SOW)

MIL–STD–973
Configuration Management

NBS 500–99
Structured Testing: A Software Testing Methodology Using the
Cyclomatic Complexity Metric

NSWCDD 84–373
Statistical Modeling and Estimation of Reliability Functions for
Software (SMERFS)

TRADOC Regulation 71–2
Combat Developments for Battlefield Automated Systems

TRADOC Pamphlet 71–7

83DA PAM 73–7 • 25 July 1997

Operational Requirements for Battlefield Automated Systems

Section III
Prescribed Forms
This section contains no entries.

Section IV
Referenced Forms

DA Form 5005–R
Engineering Change Proposal - Software

DD Form 1423
Contract Data Requirements List

Appendix B
Statement of Work (SOW) Considerations

B–1. General
a. The statement of work (SOW) defines all work tasks and

services to be performed over the course of a Government contract.
It provides information which cannot be defined in the limited scope
o f t e c h n i c a l s p e c i f i c a t i o n s a n d c o n t r a c t d a t a r e q u i r e m e n t s l i s t s
(CDRLs). Specifications are limited to descriptions of technical and
performance requirements of products. CDRL items are limited to
describing technical data to be delivered.

b. Software test and evaluation is an emerging technology for
which specific requirements are not well defined in existing specifi-
cations and standards. Specific tasks for planning and executing
software T&E should be tailored to the technical and management
characteristics of each software development. MIL-HDBK–245C es-
tablishes formal requirements for developing and implementing a
SOW.

c. The SOW is part of a binding legal document, a contract, and
should be prepared carefully and accurately.

d. The material in this appendix can be tailored and applied to

Government in-house work agreements involving software develop-
ment and testing. Substitute the name of the Government agency or
the term “ developer” for “ contractor” in the sample paragraphs.

B–2. T&E involvement in the solicitation process
a. In general, the Government acquires the products and services

described in this pamphlet by means of formal solicitations. The
solicitation process is typically comprised of three major steps:

(1) T h e G o v e r n m e n t m a k e s k n o w n t h e p r o d u c t s o r s e r v i c e s
needed, with applicable conditions, by issuing a request for proposal
(RFP).

(2) Industry responses to provide the items in the RFP are evalu-
ated and the most qualified organization(s) identified to perform the
work.

(3) Final negotiation of terms between the Government and in-
dustry occurs and one or more contracts are awarded.

b. In order to have an impact on specific software development
tasks, software T&E personnel should be involved in developing
p o r t i o n s o f t h e R F P , i n c l u d i n g i t s S O W . S p e c i f i c i t e m s w h i c h
should be addressed by software T&E personnel are:

(1) Distribution of CDRL items on a DD Form 1423 (Contract
Data Requirements List) should include independent evaluators, the
PM’s software matrix support activity, and LCSEC/PDSS personnel.

(2) Software tests should permit derivation of data which support
stated software maturity measurements and the selected metrics set.

(3) Contracted software testing should provide usable data for
Government evaluations.

c. Some specific software T&E issues which should be addressed
in contractor proposals to SOW items for procuring software are
provided in figure B–1. Checklist items with a subjective score of
four or less should be clarified or elaborated.

B–3. Acquiring metrics information
Sample paragraphs regarding metric data for use in CE are provided
for reference in figure B–2. The solicitation sections to which the
paragraphs apply are noted. Select and tailor only those paragraphs
that are most applicable.

84 DA PAM 73–7 • 25 July 1997

Figure B-1. Software T&E issue checklist example

85DA PAM 73–7 • 25 July 1997

Figure B-2. Sample metrics paragraphs

86 DA PAM 73–7 • 25 July 1997

Appendix C
Metrics Data Collection Templates

C–1. General
This appendix contains sample templates for uniform collection of
the metrics described in chapter 10 of this pamphlet. The needs and
resources of each program will determine the precise data submis-
sion start times, reporting frequency and data elements for each
metric. The templates can be tailored or used as-is, in conjunction
with appendix B.

C–2. Organization
A template is provided for each metric described in chapter 10.
Templates consist of one or more records. Each data element in a
metric record is identified with a capitalized mnemonic to simplify
cross referencing between its text definition and format description.

C–3. Cost metric template
One type of data record is used to describe cost metric data. For
each activity type, a cost metric data record contains the following
information. The format for cost metric data is shown in table C–1.
The record consists of data elements:

a. DATA_DATE - The date associated with the values of the
remaining data elements in the record. That is, the date when this
data was current.

b. SYSTEM_NAME - Name of the system to which this data
applies.

c. BUILD_ID - Build, block or version identifier to which this
data applies.

d. CSCI_NAME - The Computer Software Configuration Item
(CSCI) name to which the data applies. No value is required for this
field when reporting system/project level costs.

e. ACTIVITY_TYPE - The type of effort or product associated
with the collected data. Examples of activity types for CSCI level
reporting and system level reporting are given in chapter 10 of DA
Pam 73–7.

f . B C W S - B u d g e t e d c o s t o f w o r k s c h e d u l e d (c u m u l a t i v e t o
date). The total number of dollars that had been budgeted for the
work scheduled to be accomplished for the CSCI as of this reporting
period.

g. BCWP - Budgeted cost of work performed (cumulative to
date). The total number of dollars budgeted for the work actually
performed on the CSCI as of this reporting period.

h. ACWP - Actual cost of work performed (cumulative to date).

The total number of dollars which was actually spent for the work
done on the CSCI as of this reporting period.

C–4. Schedule metric template
One type of data record is used to describe schedule metric data.
For each milestone, deliverable, event or activity, a schedule metric
d a t a r e c o r d c o n t a i n s t h e f o l l o w i n g i n f o r m a t i o n . T h e f o r m a t f o r
schedule metric data is shown in table C–2. The record consists of
data elements:

a. DATA_DATE - The date associated with the values of the
remaining data elements in the record. That is, the date when this
data was current.

b. SYSTEM_NAME - Name of the system to which this data
applies.

c. BUILD_ID - Build, block or version identifier to which this
data applies.

d. CSCI_NAME - The Computer Software Configuration Item
(CSCI) name to which the data applies, if any. This field should not
contain a value when reporting non-CSCI specific events.

e . E V E N T _ T Y P E - T h e k i n d o f e v e n t t h a t c a t e g o r i z e s
E V E N T _ N A M E . E x a m p l e s a r e S W D E V A C T I V I T Y , D O C T
DELIV, FORMAL REVIEW, representing software development
activity, documentation delivery, and formal review.

f . E V E N T _ N A M E - T h e n a m e o f t h e m i l e s t o n e , d e l i v e r a b l e ,
event or activity this record describes. Examples of events are for-
mal system reviews, testing events, and software data product deliv-
e r i e s . S p e c i f i c e x a m p l e s a r e S W R E Q T S A N A L , C S C I Q U A L
TESTG, CSCI/HWCI INTEG, PCA, SRS DRAFT representing soft-
ware development activities: software requirements analysis, CSCI
qualification testing and CSCI/HWCI integration and testing; physi-
c a l c o n f i g u r a t i o n a u d i t a n d s o f t w a r e r e q u i r e m e n t s s p e c i f i c a t i o n
delivery.

g . P L A N _ S T A R T _ D A T E - T h e d a t e o n w h i c h t h e e v e n t i s
planned to start.

h. PLAN_END_DATE - The date on which the event is planned
to be completed.

i. ACTUAL_START_DATE - The date the event actually began.
j . A C T U A L _ E N D _ D A T E - T h e d a t e t h e e v e n t a c t u a l l y

completed.

Table C–1
Cost metric data record format

Data element Name Data type Width Decimal Units Minimum Maximum value
value

DATA_DATE C 10 Date
SYSTEM_NAME C 20
BUILD_ID C 15
CSCI_NAME C 15
ACTIVITY_TYPE C 15
BCWS N 12 2 Dollars 0.00 999999999.99
BCWP N 12 2 Dollars 0.00 999999999.99
ACWP N 12 2 Dollars 0.00 999999999.99

Note: The following standard definitions apply to all data record format tables in this appendix.

Data Type C (Character) Consists of alphabetic characters, numeric characters, or symbols. An embedded
blank between two non-blank characters is an acceptable character. Note: Numeric characters,
also called numerals, cannot be used directly in mathematical calculations.

N (Numeric) Numerals (0,1,2, ... 9), decimal point or negative sign.
Decimal Number of numerals after the decimal point.
Units Date A legitimate date expressed as MM/DD/YYYY designating month/day/year.

87DA PAM 73–7 • 25 July 1997

Table C–2
Schedule metric data record format

Data element name Data type Width Decimal Units Minimum Maximum value
value

DATA_DATE C 10 Date
SYSTEM_NAME C 20
BUILD_ID C 15
CSCI_NAME C 15
EVENT_TYPE C 15
EVENT_NAME C 20
PLAN_START_DATE C 10 Date
PLAN_END_DATE C 10 Date
ACTUAL_START_DATE C 10 Date
ACTUAL_END_DATE C 10 Date

C–5. Computer resource utilization (CRU) metric template
a. One type of data record is used to describe computer resource

utilization metric data. The record may report either hardware re-
source (device) utilization data or software resource allocation data.

b. In hardware resource utilization reporting, for each computer
resource in the system, a CRU metric record contains the following
information. The format for utilization data is shown in table C–3.
The record consists of data elements:

(1) DATA_DATE - The date associated with the values of the
remaining data elements in the record. That is, the date when this
data was current.

(2) SYSTEM_NAME - Name of the system to which this data
applies.

(3) BUILD_ID - Build, block or version identifier to which this
data applies.

(4) CSCI_NAME - The Computer Software Configuration Item
(CSCI) name to which the data applies, if any. This field should not
contain a value when reporting hardware resource utilization data.

(5) RESOURCE_ID - A unique identifier for the resource. No
value is required for this field if reporting total CSCI software
allocation data for a single RESOURCE_TYPE.

(6) RESOURCE_TYPE - The kind of resource represented by
RESOURCE_ID. Examples are CPU, RAM, I/O channel, disk stor-
age and LAN.

(7) UNITS_OF_MEASURE - The type of measurement units that
the resource’s capacity is expressed in. For example, megabytes or
millions of instructions per second.

(8) R E S O U R C E _ C A P A C I T Y - T h e n u m b e r o f U N I T S _ O -
F _ M E A S U R E t h a t r e p r e s e n t s t h e t o t a l c a p a c i t y (1 0 0 %) o f t h e
resource.

(9) PCNT_TGT_UPR_BND - The target upper bound utilization
value for the resource. This is the desired maximum value for this
resource’s utilization expressed as a percentage of total capacity of
the resource.

(1 0) P C N T _ P R O J E C T E D - T h e p r o j e c t e d c a p a c i t y u t i l i z a t i o n
value for the resource. This is the estimated percentage of maximum
utilization expected at delivery.

(11) PCNT_ACTUAL - The measured value of resource capacity
utilized during peak operational loading periods expressed as a per-
centage of total capacity of the resource.

(12) COMP_TYPE - Identification as to whether measurements
were taken on the actual target machine or a software test environ-
ment configuration.

c. In software resource allocation reporting, for each CSCI in the
system, a CRU metric record contains the information in data ele-
ments (1) through (12) above. The format for utilization data is
shown in table C–3. If reporting CSCI allocations to individual
h a r d w a r e d e v i c e s , s u p p l y v a l u e s f o r b o t h R E S O U R C E _ I D a n d
RESOURCE_TYPE.

Table C–3
CRU metric data record format

Data element name Data type Width Decimal Units Minimum Maximum value
value

DATA_DATE C 10 Date
SYSTEM_NAME C 20
BUILD_ID C 15
CSCI_NAME C 15
RESOURCE_ID C 12
RESOURCE_TYPE C 12
UNITS_OF_MEASURE C 12
RESOURCE_CAPACITY N 11 2 ** 0 99999999.99
PCNT_TGT_UPR_BND N 3 0 Percent 0 100
PCNT_PROJECTED N 3 0 Percent 0 100
PCNT_ACTUAL N 3 0 Percent 0 100
COMP_TYPE C 1 * *

Notes:
* Range of values is limited to H, T.
** Express RESOURCE values in UNITS_OF_MEASURE.

C–6. Software Engineering Environment (SEE) metric
template
One type of data record is used to described SEE metric data. For
each developer on which a software maturity level assessment is
performed, a SEE metric record contains the following information.

The format for software engineering environment metric data is
shown in table C–4. The record consists of data elements:

a. DATA_DATE - The date associated with the values of the
remaining data elements in the record. That is, the date when this
data was current.

88 DA PAM 73–7 • 25 July 1997

b. DEVELOPER_NAME - The name of the developer that was
evaluated.

c. SYSTEM_NAME - Name of the system to which this data
applies.

d. BUILD_ID - Build, block or version identifier to which this
data applies.

e. MATURITY_LEVEL - The overall process maturity level as-
signed to the developer.

f. MATURITY_DATE - The date the process maturity level was
assigned to the developer.

g. KEY_PROCESS_AREA - The SEI key process area (KPA)
whose results are reported by this record. See chapter 10 of DA
Pam 73–7 for a list of applicable KPAs.

h. KPA_RESULT - Key process area KEY_PROCESS_AREA
was assessed as satisfactory, unsatisfactory or not rated. Not rated
means the KPA was not reviewed in this assessment.

i. ASSESSMENT_TYPE - Indicator as to whether the assessment
was performed by the developer as a self-assessment, the acquirer or
an authorized representative representing the sponsor, or by an inde-
pendent third party organization.

Table C–4
SEE metric data record format

Data element name Data type Width Decimal Units Minimum Maximum value
value

DATA_DATE C 10 Date
DEVELOPER_NAME C 15
SYSTEM_NAME C 20
BUILD_ID C 15
MATURITY_LEVEL N 1 0 1 5
MATURITY_DATE C 10 Date
KEY_PROCESS_AREA C 15 * *
KPA_RESULT C 1 ** **
ASSESSMENT_TYPE C 6 *** ***

Notes:
* Range of values is limited to SW CM, SW QA, SW SUB MGT, SW PROJ TRACK, SW PROJ PLAN, REQTS MGT, PEER REVIEW, GROUP COOR, SW PROD ENGR,
INTEG SW MGT, TRAINING PGM, PROCESS DEF, PROCESS FOCUS, QUAL MGT, PROCESS ANAL, PROC CHNG MGT, TECH INNOV, DEFECT PREV.
** Range of values is limited to S, U, N.
*** Range of values is limited to SELF, ACQ, INDEP.

C–7. Requirements traceability metric template
a . O n e t y p e o f d a t a r e c o r d i s u s e d t o d e s c r i b e r e q u i r e m e n t s

traceability metric data. The record may report either software re-
quirements traceability results or overall requirements traceability
results.

b. Software requirements traceability reporting. For each CSCI in
the system, a requirements traceability record contains the following
information. The format for requirements traceability metric data is
shown in table C–5. The record consists of data elements:

(1) DATA_DATE - The date associated with the values of the
remaining data elements in the record. That is, the date when this
data was current.

(2) SYSTEM_NAME - Name of the system to which this data
applies.

(3) BUILD_ID - Build, block or version identifier to which this
data applies.

(4) CSCI_NAME - Name of the Computer Software Configura-
tion Item (CSCI) to which the data applies, if any. If overall system
or non-CSCI specific documents or requirements are being traced,
there should be no value in this field.

(5) FROM_DOCT - The name of the document whose require-
m e n t s w e r e e x a m i n e d i n o r d e r t o t h e m t r a c e f o r w a r d i n t o t h e
TO_DOCT.

(6) F R O M _ D O C T _ V E R _ I D - T h e c o n f i g u r a t i o n i d e n t i f i e r a s -
signed to the edition of the FROM_DOCT that was examined.

(7) FROM_DOCT_TYPE - The type of document or type of
requirements that were examined in the FROM_DOCT. Examples
are SW REQTS, IF REQTS, USER REQTS, HW SW DESIGN, SW
UNIT DESIGN, CODE, SW TEST CASES, and SYSTEM REQTS
representing software requirements, interface requirements, user re-
quirements, CSCI- wide and CSCI architectural design, software

u n i t d e s i g n , c o d e , s o f t w a r e t e s t c a s e s a n d s y s t e m r e q u i r e m e n t s
respectively.

(8) F R O M _ D O C T _ N U M _ R E Q - T h e n u m b e r o f F R O M -
_DOCT_TYPE requirements allocated to document FROM_DOCT.

(9) TO_DOCT - The name of the document examined in order to
find the appropriate link to the requirements in FROM_DOCT.

(10) TO_DOCT_VER_ID - The configuration identifier assigned
to the edition of the TO_DOCT that was examined.

(11) TO_DOCT_TYPE - The type of document or type of re-
quirements that were examined in the TO_DOCT. See examples in
item (7).

(12) TO_DOCT_NUM_REQ - The number of TO_DOCT_TYPE
requirements allocated to document TO_DOCT.

(1 3) T R A C E _ F R O M _ T O - T h e n u m b e r o f r e q u i r e m e n t s i n
FROM_DOCT that were successfully traced into the TO_DOCT.

(14) NO_TRACE_FROM_TO - The number of requirements in
FROM_DOCT that could not be traced into the TO_DOCT, but
should have been addressed in TO_DOCT.

(15) BACK_TRACE_TO_FROM - The number of requirements
i n T O _ D O C T t h a t w e r e s u c c e s s f u l l y t r a c e d b a c k w a r d t o t h e
FROM_DOCT.

(16) NO_BK_TRACE_TO_FROM - The number of requirements
in TO_DOCT that did not trace back to the FROM_DOCT.

c. Overall requirements traceability reporting. For each set of
non-CSCI specific documents examined, a requirements traceability
metric record contains the information in data elements (1) through
(3) and (5) through (16). The format for traceability data is shown
in table C–5.

89DA PAM 73–7 • 25 July 1997

Table C–5
Requirements traceability data record format

Data element name Data type Width Decimal Units Minimum Maximum value
value

DATA_DATE C 10 Date
SYSTEM_NAME C 20
BUILD_ID C 15
CSCI_NAME C 15
FROM_DOCT C 30
FROM_DOCT_VER_ID C 15
FROM_DOCT_TYPE C 15
FROM_DOCT_NUM_REQ N 5 0 0 99999
TO_DOCT C 30
TO_DOCT_VER_ID C 15
TO_DOCT_TYPE C 15
TO_DOCT_NUM_REQ N 5 0 0 99999
TRACE_FROM_TO N 5 0 0 99999
NO_TRACE_FROM_TO N 5 0 0 99999
BACK_TRACE_TO_FROM N 5 0 0 99999
NO_BACK_TRACE_TO_FROM N 5 0 0 99999

C–8. Requirements stability metric template
One type of data record is used to describe requirements stability
metric data. For each CSCI in the system, a requirements stability
metric record contains the following information. The format for
requirements stability metric data is shown in table C–6. The record
consists of data elements:

a. DATA_DATE - The date associated with the values of the
remaining data elements in the record. That is, the date when this
data was current.

b. SYSTEM_NAME - Name of the system to which this data
applies.

c. BUILD_ID - Build, block or version identifier to which this
data applies.

d. CSCI_NAME - The Computer Software Configuration Item
(CSCI) name to which the data applies.

e. TOT_REQ_DISCREP - The total number of software require-
ments discrepancies detected to date (cumulative).

f. TOT_CLOSED_DISCREP - The total number of software re-
quirements discrepancies to date (cumulative) which are closed as of
this reporting period.

g. USER_ECP - The number of Engineering Change Proposals-
Software (ECP-Ss) submitted in this reporting period by the user
against software requirements.

h. USER_SLOC - The number of source lines of code affected in
this reporting period by approved software requirements related
ECP-Ss that were submitted by the user. Source lines of code are
non-blank, non-comment, executable and data statements.

i. USER_MODS_AFFECT - The number of software units in the
CSCI which are affected in this reporting period by approved soft-
ware requirements-related ECP-Ss submitted by the user.

j. DEV_ECP - The number of ECP-Ss submitted in this reporting
period by the developer against software requirements.

k. DEV_SLOC - The number of source lines of code affected in
this reporting period by approved software requirements related
ECP-Ss that were submitted by the developer. Source lines of code
are non-blank, non-comment, executable and data statements.

l. DEV_MODS_AFFECT - The number of software units in the
CSCI which are affected in this reporting period by approved soft-
ware requirements-related ECP-Ss submitted by the developer.

m. SLOC - The number of source lines of code in the CSCI.
Source lines of code are non-blank, non-comment, executable and
data statements.

n . N U M _ S R S _ R E Q - T h e n u m b e r o f S o f t w a r e R e q u i r e m e n t s
Specification (SRS) requirements for this CSCI.

o. NUM_SRS_REQ_ADD - The number of SRS requirements
added in this reporting period due to approved ECP-Ss.

p. NUM_SRS_REQ_MOD - The number of SRS requirements
modified in this reporting period due to approved ECP-Ss.

q. NUM_SRS_REQ_DEL - The number of SRS requirements
deleted in this reporting period due to approved ECP-Ss.

Table C–6
Requirements stability metric data record format

Data element name Data type Width Decimal Units Minimum Maximum value
value

DATA_DATE C 10 Date
SYSTEM_NAME C 20
BUILD_ID C 15
CSCI_NAME C 15
TOT_REQ_DISCREP N 5 0 0 99999
TOT_CLOSED_DISCREP N 5 0 0 99999
USER_ECP N 5 0 0 99999
USER_SLOC N 7 0 0 9999999
USER_MODS_AFFECT N 5 0 0 99999
DEV_ECP N 5 0 0 99999
DEV_SLOC N 7 0 0 9999999
DEV_MODS_AFFECT N 5 0 0 99999
SLOC N 7 0 0 9999999
NUM_SRS_REQ N 5 0 0 99999
NUM_SRS_REQ_ADD N 5 0 0 99999
NUM_SRS_REQ_MOD N 5 0 0 99999
NUM_SRS_REQ_DEL N 5 0 0 99999

90 DA PAM 73–7 • 25 July 1997

C–9. Design stability metric template
One type of data record is used to describe design stability metric
data. For each CSCI in each version delivered during this reporting
period, a design stability metric record contains the following infor-
mation. The format for design stability metric data is shown in table
C–7. The record consists of data elements:

a. DATA_DATE - The date associated with the values of the
remaining data elements in the record. That is, the date when this
data was current.

b. SYSTEM_NAME - Name of the system to which this data
applies.

c. BUILD_ID - Build, block or version identifier to which this
data applies.

d. CSCI_NAME - The Computer Software Configuration Item
(CSCI) name to which the data applies.

e. VERSION_ID - The configuration control version identifica-
tion of the CSCI that is being reported.

f. COMP_DATE - The planned date that VERSION_ID will be
completed.

g. TOTMOD_FINAL - The total number of software units that
are planned to comprise the final delivery of the CSCI.

h. TOTMOD_N_DESIGN - The number of units comprising the
CSCI delivered in VERSION_ID.

i. NUM_MOD_CHANGED - The number of units in which de-
sign related changes were made since the last delivery of the CSCI.

j. NUM_MOD_ADDED - The number of units that were added
to the CSCI since the last delivery.

k. NUM_MOD_DELETED - The number of units that were de-
leted from the CSCI since the last delivery.

Table C–7
Design stability metric data record format

Data element name Data type Width Decimal Units Minimum Maximum value
value

DATA_DATE C 10 Date
SYSTEM_NAME C 20
BUILD_ID C 15
CSCI_NAME C 15
VERSION_ID C 15
COMP_DATE C 10 Date
TOTMOD_FINAL N 5 0 0 99999
TOTMOD_N_DESIGN N 5 0 0 99999
NUM_MOD_CHANGED N 5 0 0 99999
NUM_MOD_ADDED N 5 0 0 99999
NUM_MOD_DELETED N 5 0 0 99999

C–10. Complexity metric template
One type of data record is used to describe complexity metric data.
For each software unit in the system that has been added, modified,
or deleted, a complexity metric record contains the following infor-
mation. The format for complexity metric data is shown in table
C–8. The record consists of data elements:

a. DATA_DATE - The date associated with the values of the
remaining data elements in the record. That is, the date when this
data was current.

b. SYSTEM_NAME - Name of the system to which this data
applies.

c. BUILD_ID - Build, block or version identifier to which this
data applies.

d. CSCI_NAME - The Computer Software Configuration Item
(CSCI) name to which the data applies.

e. UNIT_NAME - The name of the software unit to which the
data applies.

f. DELETED - An indicator that this unit has been deleted from
the CSCI. Acceptable values are Y (deleted) or N (unit is part of the
system configuration).

g. LANGUAGE - The programming language the software unit
is written in.

h . C Y C L O M A T I C _ C O M P L E X - T h e c o m p u t e d v a l u e o f
McCabe’s cyclomatic complexity for the unit.

i. HALSTEAD_VOCAB - The computed value of Halstead’s vo-
cabulary term for the unit.

j . H A L S T E A D _ P G M _ L E N G T H - T h e c o m p u t e d v a l u e o f
Halstead’s program length term for the unit.

k. HALSTEAD_VOLUME - The computed value of Halstead’s
program volume term for the unit.

l. CTRL_PATH_CROSS - The total number of occurrences in
the unit where control paths cross.

m. SLOC - The total number of source lines of code in the unit.
Source lines of code are non-blank, non-comment, executable and
data statements.

n. PCNT_COMMENT - The computed percentage of comment
lines in the unit.

o. PDL_OR_CODE - An indicator as to whether the complexity
for this unit was computed on its Program Design Language (PDL)
or source code representation.

Table C–8
Complexity metric data record format

Data element name Data type Width Decimal Units Minimum Maximum value
value

DATA_DATE C 10 Date
SYSTEM_NAME C 20
BUILD_ID C 15
CSCI_NAME C 15
UNIT_NAME C 15
DELETED C 1 * *
LANGUAGE C 12
CYCLOMATIC_COMPLEX N 5 0 0 99999
HALSTEAD_VOCAB N 5 0 0 99999

91DA PAM 73–7 • 25 July 1997

Table C–8
Complexity metric data record format—Continued

Data element name Data type Width Decimal Units Minimum Maximum value
value

HALSTEAD_PGM_LENGTH N 5 0 0 99999
HALSTEAD_VOLUME N 8 2 0.00 99999.99
CTRL_PATH_CROSS N 5 0 0 99999
SLOC N 5 0 0 99999
PCNT_COMMENT N 3 0 Percent 0 100
PDL_OR_CODE C 4 ** **

Notes:
* Range of values is limited to Y, N.
** Range of values is limited to PDL, CODE.

C–11. Breadth of testing metric template
One type of data record is used to describe breadth of testing metric
data. For each CSCI in the system, a breadth of testing metric
record contains the following information. The format for breadth of
testing metric data is shown in table C–9. The record consists of
data elements:

a. DATA_DATE - The date associated with the values of the
remaining data elements in the record. That is, the date when this
data was current.

b. SYSTEM_NAME - Name of the system to which this data
applies.

c. BUILD_ID - Build, block or version identifier to which this
data applies.

d. CSCI_NAME - The Computer Software Configuration Item
(CSCI) name to which the data applies.

e . R E Q T S _ T Y P E - I n d i c a t o r a s t o w h e t h e r t h e r e q u i r e m e n t s
reported in this record are SRS requirements, IRS requirements or
UFD requirements.

f. REQTS_PRIORITY - Level of priority (criticality) assigned to
the requirements, if any.

g. NUM_REQTS - The total number of REQTS_TYPE require-
ments allocated to the CSCI under development.

h. TOT_TESTED_REQTS - The total number of REQTS_TYPE
requirements for the CSCI that have been tested using approved test
cases.

i. TOT_PASSED_REQTS - The total number of REQTS_TYPE
requirements for the CSCI that have been successfully demonstrated
through testing.

j. TEST_ID - The type of testing or a test event identifier with
which this data is associated. Examples of TEST_ID are DT (Gov-
e r n m e n t D e v e l o p m e n t a l T e s t) , O T (O p e r a t i o n a l T e s t) o r C S C I
QUAL (CSCI qualification).

Table C–9
Breadth of testing metric data record format

Data element name Data type Width Decimal Units Minimum Maximum value
value

DATA_DATE C 10 Date
SYSTEM_NAME C 20
BUILD_ID C 15
CSCI_NAME C 15
REQTS_TYPE C 12 * *
REQTS_PRIORITY N 5 0 0 5
NUM_REQTS N 5 0 0 99999
TOT_TESTED_REQTS N 5 0 0 99999
TOT_PASSED_REQTS N 5 0 0 99999
TEST_ID C 12

Notes:
* Range of values is limited to SRS, IRS, UFD.

C–12. Depth of testing metric template
One type of data record is used to describe depth of testing metric
data. For each software unit in the system that has been added,
modified, tested, or deleted since the last reporting period, a depth
of testing metric record contains the following information. The
format for depth of testing metric data is shown in table C–10. The
record consists of data elements:

a. DATA_DATE - The date associated with the values of the
remaining data elements in the record. That is, the date when this
data was current.

b. SYSTEM_NAME - Name of the system to which this data
applies.

c. BUILD_ID - Build, block or version identifier to which this
data applies.

d. CSCI_NAME - The Computer Software Configuration Item
(CSCI) name to which the data applies.

e. UNIT_NAME - The name of the software unit to which the
data applies.

f. DELETED - An indicator that this unit has been deleted from
the CSCI. Acceptable values are Y (deleted) or N (unit is part of the
system configuration).

g. DEPTH_MEASURE - Designates to which depth attribute the
remaining data elements of the record apply. Acceptable values are
PATH, STATEMENT, INPUT, DECISION PNT corresponding to
paths, statements, input instances and decision points, respectively.

h . T O T _ I N _ U N I T - T h e t o t a l n u m b e r o f a t t r i b u t e s o f t y p e
DEPTH_MEASURE in the unit being reported.

i . T O T _ T E S T E D - T h e t o t a l n u m b e r o f a t t r i b u t e s o f t y p e
DEPTH_MEASURE in the unit that have been tested using ap-
proved test cases.

j . T O T _ P A S S E D - T h e t o t a l n u m b e r o f a t t r i b u t e s o f t y p e
DEPTH_MEASURE in the unit that have been successfully tested
in accordance with the measure’s criteria stated in chapter 10 of DA
Pam 73–7.

92 DA PAM 73–7 • 25 July 1997

Table C–10
Depth of testing metric data record

Data element name Data type Width Decimal Units Minimum Maximum value
value

DATA_DATE C 10 Date
SYSTEM_NAME C 20
BUILD_ID C 15
CSCI_NAME C 15
UNIT_NAME C 15
DELETED C 1 * *
DEPTH_MEASURE C 12 ** **
TOT_IN_UNIT N 5 0 0 99999
TOT_TESTED N 5 0 0 99999
TOT_PASSED N 5 0 0 99999

Notes:
* Range of values is limited to Y, N.
** Range of values is limited to PATH, STATEMENT, INPUT, DECISION PNT.

C–13. Fault profiles metric template
One type of data record is used to describe fault profiles metric
data. For each CSCI in the system, a fault profiles metric record
contains the following information. The format for fault profiles
metric data is shown in table C–11. The record consists of data
elements:

a. DATA_DATE - The date associated with the values of the
remaining data elements in the record. That is, the date when this
data was current.

b. SYSTEM_NAME - Name of the system to which this data
applies.

c. BUILD_ID - Build, block or version identifier to which this
data applies.

d. CSCI_NAME - The Computer Software Configuration Item
(CSCI) name to which the data applies.

e. FAULT_PRIORITY - The priority level of faults described by
the remaining data elements in the record.

f. FAULT_CATEGORY - The category of faults described by
the remaining data elements in the record.

g. TOT_FLTS_DETECTED - The total number of faults with
priority value FAULT_PRIORITY detected to date.

h. TOT_FLTS_CLOSED - The total number of faults with prior-
ity value FAULT_PRIORITY that have been closed/resolved to
date.

i. AVGOPEN_AGE - The average number of days a currently
open fault with priority value FAULT_PRIORITY has remained
open.

j. AVGCLOSE_AGE - The average number of days it took to
close a priority FAULT_PRIORITY fault.

k . A V G _ A G E - T h e a v e r a g e a g e , i n d a y s , o f a p r i o r i t y
FAULT_PRIORITY fault (both open and closed).

Table C–11
Fault profiles metric record metric data format

Data element name Data type Width Decimal Units Minimum Maximum value
value

DATA_DATE C 10 Date
SYSTEM_NAME C 20
BUILD_ID C 15
CSCI_NAME C 15
FAULT_PRIORITY N 5 0 0 5
FAULT_CATEGORY C 15
TOT_FLTS_DETECTED N 6 0 0 999999
TOT_FLTS_CLOSED N 6 0 0 999999
AVGOPEN_AGE N 5 0 Days 0 99999
AVGCLOSE_AGE N 5 0 Days 0 99999
AVG_AGE N 5 0 Days 0 99999

C–14. Reliability metric template
One type of data record is used to describe reliability metric data.
For each system test event for which system/software reliability data
is measured, a reliability metric record contains the following infor-
mation. The format for reliability metric data is shown in table
C–12. The record consists of data elements:

a. DATA_DATE - The date associated with the values of the
remaining data elements in the record. That is, the date when this
data was current.

b. SYSTEM_NAME - Name of the system to which this data
applies.

c. BUILD_ID - Build, block or version identifier to which this
data applies.

d. TEST_ID - The type of testing or a test event identifier with

which this data is associated. Examples of TEST_ID are RGT (Reli-
ability Growth Test), DT (Government Developmental Test), or OT
(Operational Test).

e. MEASURED_FAIL_RATE - The computed failure rate of the
software as measured in testing expressed in failures per month.

f. PROJECTED_FAIL_RATE - The projected failure rate of the
software for the reporting period as calculated by the reliability
analysis model.

g. RELY_MODEL - The name of the analytical model used to
calculate the PROJECTED_FAILURE_RATE.

h. FAIL_RATE_OBJECTIVE - The desired goal of the accepta-
ble number of software failures.

i. SYS_REQ_MTBF - The required/specified value of mean time
between mission failures caused by system hardware or software
against which the value measured during the test is compared for
compliance.

93DA PAM 73–7 • 25 July 1997

j. PEST_SYS_MTBF - The computed point estimate of mean
time between mission failures caused by system hardware or soft-
ware as measured during the test event (field TEST_ID).

k . L C B _ S Y S _ M T B F - T h e c a l c u l a t e d 8 0 % l o w e r c o n f i d e n c e
bound value of mean time between mission failures caused by
system hardware or software as measured during the test event.

l. PEST_SW_MTBF - The computed point estimate of mean time
between mission failures caused by software as measured during the
test event.

m . L C B _ S W _ M T B F - T h e c a l c u l a t e d 8 0 % l o w e r c o n f i d e n c e
bound value of mean time between mission failures caused by
software as measured during the test event.

n . R E Q _ M E A N _ R E S T O R - T h e r e q u i r e d / s p e c i f i e d v a l u e o f
mean time to restore the system to operational status.

o . R E Q _ M E D N _ R E S T O R - T h e r e q u i r e d / s p e c i f i e d v a l u e o f
median time to restore the system to operational status.

p. REQ_MAX95_RESTOR - The required/specified maximum
95th percentile value of time to restore the system to operational
status.

q. MEAN_RESTOR_SYS - The computed mean time to restore
the system to operational condition.

r. MEDN_RESTOR_SYS - The computed median time to restore
the system to operational condition.

s. MAX95_RESTOR_SYS - The computed maximum 95th per-
centile value of time to restore the system to operational condition.

Table C–12
Reliability metric data record format

Data element name Data type Width Decimal Units Minimum Maximum value
value

DATA_DATE C 10 Date
SYSTEM_NAME C 20
BUILD_ID C 15
TEST_ID C 12
MEASURED_FAIL_RATE N 8 2 Fpm * 0.00 99999.99
PROJECTED_FAIL_RATE N 8 2 Fpm 0.00 99999.99
RELY_MODEL C 15
FAIL_RATE_OBJECTIVE N 8 2 Fpm 0.00 99999.99
SYS_REQ_MTBF N 8 2 Hours 0.00 99999.99
PEST_SYS_MTBF N 8 2 Hours 0.00 99999.99
LCB_SYS_MTBF N 8 2 Hours 0.00 99999.99
PEST_SW_MTBF N 8 2 Hours 0.00 99999.99
LCB_SW_MTBF N 8 2 Hours 0.00 99999.99
REQ_MEAN_RESTOR N 8 2 Hours 0.00 99999.99
REQ_MEDN_RESTOR N 8 2 Hours 0.00 99999.99
REQ_MAX95_RESTOR N 8 2 Hours 0.00 99999.99
MEAN_RESTOR_SYS N 8 2 Hours 0.00 99999.99
MEDN_RESTOR_SYS N 8 2 Hours 0.00 99999.99
MAX95_RESTOR_SYS N 8 2 Hours 0.00 99999.99

Notes:
* Fpm - Failures per month.

C–15. Manpower metric template
One type of data record is used to describe manpower metric data.
For each labor category and experience level reported, a manpower
metric record contains the following information. The format for
reliability metric data is shown in table C–13. The record consists of
data elements:

a. DATA_DATE - The date associated with the values of the
remaining data elements in the record. That is, the date when this
data was current.

b. SYSTEM_NAME - Name of the system to which this data
applies.

c. BUILD_ID - Build, block or version identifier to which this
data applies.

d. CSCI_NAME - The Computer Software Configuration Item
(CSCI) name to which the data applies.

e. LABOR_CATEGORY - The name of the labor category to
which this data applies.

f . E X P E R I E N C E _ L E V E L - T h e l e v e l o f e x p e r i e n c e i n t h e
LABOR_CATEGORY to which this data applies.

g. NUM_STAFF_PLANNED - The number of personnel planned
to be on staff in the reporting period.

h. NUM_STAFF_ACTUAL - The number of personnel actually
on staff in the reporting period.

i. NUM_STAFF_LOSS - The number of unplanned losses in
personnel that occurred in the reporting period.

j. TOT_HOURS_PLANNED - The total number of labor hours
(cumulative to date) that are planned to be expended by the end of
the reporting period.

k. TOT_HOURS_ACTUAL - The total number of labor hours
(cumulative to date) that were actually expended in the reporting
period.

Table C–13
Manpower metric data record format

Data element name Data type Width Decimal Units Minimum Maximum value
value

DATA_DATE C 10 Date
SYSTEM_NAME C 20
BUILD_ID C 15
CSCI_NAME C 15
LABOR_CATEGORY C 20
EXPERIENCE_LEVEL C 12
NUM_STAFF_PLANNED N 5 0 0 99999
NUM_STAFF_ACTUAL N 5 0 0 99999

94 DA PAM 73–7 • 25 July 1997

Table C–13
Manpower metric data record format—Continued

Data element name Data type Width Decimal Units Minimum Maximum value
value

NUM_STAFF_LOSS N 5 0 0 99999
TOT_HOURS_PLANNED N 8 0 Hours 0 99999999
TOT_HOURS_ACTUAL N 8 0 Hours 0 99999999

C–16. Development progress metric template
One type of data record is used to describe development progress
metric data. For each CSCI in the system a development progress
metric record contains the following information. The format for
development progress metric data is shown in table C–14. The
record consists of data elements:

a. DATA_DATE - The date associated with the values of the
remaining data elements in the record. That is, the date when this
data was current.

b. SYSTEM_NAME - Name of the system to which this data
applies.

c. BUILD_ID - Build, block or version identifier to which this
data applies.

d. CSCI_NAME - The Computer Software Configuration Item
(CSCI) name to which the data applies.

e. TOT_UNITS_FINAL - The total number of software units
planned for the final delivery of this CSCI in BUILD_ID.

f. TOT_DESIGNED_PLAN - The total number of units (cumula-
tive to date) that are planned to have completed the design activity
by the end of the reporting period.

g. TOT_UNIT_TESTED_PLAN - The total number of units (cu-
mulative to date) that are planned to have completed implementation
and unit testing by the end of the reporting period.

h. TOT_UNIT_INTEG_PLAN - The total number of units (cu-
mulative to date) that are planned to have completed unit integration
and testing by the end of the reporting period.

i. TOT_DESIGNED_ACTUAL - The total number of units (cu-
mulative to date) that completed design through the current report-
ing period.

j. TOT_UNIT_TESTED_ACTUAL - The total number of units
(cumulative to date) that completed implementation and unit testing
through the current reporting period.

k. TOT_UNIT_INTEG_ACTUAL - The total number of units
(cumulative to date) that completed unit integration and testing
through the current reporting period.

Table C–14
Development progress metric data record format

Data element name Data type Width Decimal Units Minimum Maximum value
value

DATA_DATE C 10 Date
SYSTEM_NAME C 20
BUILD_ID C 15
CSCI_NAME C 15
TOT_UNITS_FINAL N 5 0 0 99999
TOT_DESIGNED_PLAN N 5 0 0 99999
TOT_UNIT_TESTED_PLAN N 5 0 0 99999
TOT_UNIT_INTEG_PLAN N 5 0 0 99999
TOT_DESIGNED_ACTUAL N 5 0 0 99999
TOT_UNIT_TESTED_ACTUAL N 5 0 0 99999
TOT_UNIT_INTEG_ACTUAL N 5 0 0 99999

95DA PAM 73–7 • 25 July 1997

Glossary

Section I
Abbreviations

ADP
automatic data processing

AMC
Army Materiel Command

AMCCOM
Armament, Munitions and Chemical
Command

AMSAA
Army Materiel Systems Analysis Activity

AR
Army regulation

BAS
battlefield automated system

BOIP
basis of issue plan

CCB
configuration control board

CDA
Central Design Activity

CE
continuous evaluation

CECOM
Communications-Electronics Command

CI
configuration item

CM
configuration management

COM
computer operation manual

CPT
comparison test

CPU
central processing unit

CSC
computer software component

CSTA
Combat Systems Test Activity

DA
Department of the Army

DID
data item description

DOD
Department of Defense

DODD
Department of Defense directive

DODI
Department of Defense instruction

DS
database specification

DT
developmental test

DTP
detailed test plan

ECP
engineering change proposal

EDP
event design plan

EM
end user mannual

FDTE
force development testing and
experimentation

I/O
input/output

IAW
in accordance with

IEP
independent evaluation plan

IER
independent evaluation report

ILSP
integrated logistic support plan

INSCOM
Intelligence and Security Command

IPT
integrated product team

IP
implementation procedures

IPR
in-process review

ISO
International Organization for
Standardization

ISSC
Information Systems Support Command

JCS
Joint Chiefs of Staff

LOC
lines of code

MACOM
major Army command

MDR
milestone decision review

MM
maintenance manual

MOA
Memorandum of Agreement

MOE(s)
measure of effectiveness

MOP
measure of performance

MOT
multi-service operational test

MP
management plan

MS
milestone

MSC
major subordinate command

MTBF
mean-time-between-failure

MTTR
mean-time-to-repair

OEC
Operational Evaluation Command

OSUT
on-site user test

OT
operational test

PA
proponent agency

PCA
physical configuration audit

PCR
problem/change report

PEO
program executive officer

PM
program/project/product manager

PT
test plan

QA
quality assurance

QQPRI
qualitative and quantitative personnel require-
ments information

RAM
r e l i a b i l i t y , a v a i l a b i l i t y , m a i n t a i n a b i l i t y r a n -
dom access memory

RFP
request for proposal

96 DA PAM 73–7 • 25 July 1997

RT
test analysis report

SA
system assessment

SAT
software acceptance test

SCM
software configuration management

SCP
software change package

SDC
Software Development Center

SDD
software design description, software design
document

SDF
software development file

SDP
software development plan

SEP
system evaluation plan

SIP
software installation plan

SIT
system integration test

SOW
statement of work

SPM
software programmer’s manual

SPR
system post deployment review

SPS
software product specification

SQAP
software quality assurance plan

SQT
software qualification test

SS
system/subsystem specification

SSA
software support activity

SSEB
source selection evaluation board

SSS
system/subsystem specification

SUM
software user manual

TACOM
Tank Automotive Command

TDP
test design plan

TECOM
Test and Evaluation Command

TFT
technical feasibility testing

TIWG
Test Integration Working Group

TR
technical report

TRADOC
Training and Doctrine Command

UFD
users’ functional description

WBS
work breakdown structure

Section II
Terms

Allocated baseline
T h e i n i t i a l l y a p p r o v e d d o c u m e n t a t i o n d e -
scribing an item’s functional, interoperability,
and interface characteristics that are allocated
from those of a system or a higher level
c o n f i g u r a t i o n i t e m , i n t e r f a c e r e q u i r e m e n t s
w i t h i n t e r f a c i n g c o n f i g u r a t i o n i t e m s , a d d i -
tional design constraints, and the verification
required to demonstrate the achievement of
t h o s e s p e c i f i e d c h a r a c t e r i s t i c s . (R e f e r e n c e
MIL-STD–973)

Army technical architecture (ATA)
The approved reference that identifies man-
dated and recommended standards regarding
information management processes and im-
plementations for systems that perform com-
puting and communications functions for the
Army. The ATA incorporates elements of the
DOD’s technical architecture framework for
information management (TAFIM) as well as
o t h e r D O D a c q u i s i t i o n a n d s t a n d a r d i z a t i o n
initiatives.

Automated information system (AIS)
A combination of information, computer and
telecommunications resources and other in-
f o r m a t i o n t e c h n o l o g y a n d p e r s o n n e l r e -
s o u r c e s t h a t c o l l e c t s , r e c o r d s , p r o c e s s e s ,
stores, communicates, retrieves, and displays
information. (Reference AR 25–3)

Baseline
Configuration documentation formally desig-
nated and fixed at a specific time during a
configuration item’s life cycle. Configuration
baselines, plus approved changes from those
baselines constitute the current configuration.
(Reference MIL-STD–973)

Benchmark test files (BMTF)
A database of known content against which a
controlled set of inputs is processed and from
which output results may be predicted. This
term is used in reference to a test environ-
ment and pre-established test cases/data.

CASE tools
C o m p u t e r a i d e d s o f t w a r e e n g i n e e r i n g
(CASE) tools are systems for building sys-
tems; they automate elements of the require-
ments analysis, design, development or test
process.

Code walk-through
The process of assessing the level of software
p e r f o r m a n c e a n d d e s i g n s t r u c t u r e t h a t r e -
quires the developer to demonstrate the capa-
b i l i t i e s o f t h e s o f t w a r e t o t e c h n i c a l ,
functional, and user representatives.

Computer resources
The totality of computer personnel, documen-
t a t i o n , s e r v i c e s , a n d s u p p l i e s a p p l i e d t o a
g i v e n e f f o r t . T h i s i n c l u d e s h a r d w a r e , s o f t -
ware, services, personnel, documentation and
supplies.

Computer resource life cycle management
plan (CRLCMP)
The primary Government planning document
used at all decision levels for assessing the
adequacy of the overall computer resources
m a n a g e m e n t e f f o r t s t h r o u g h o u t a s y s t e m ’ s
life. (Reference DA Pamphlet 70–3)

Computer resources IPT
Often established by the material developer
after Milestone I for each AR 70–1 system to
aid in the management of system computer
resources. A computer resources IPT assists
in insuring compliance with policy, proce-
d u r e s , p l a n s a n d s t a n d a r d s e s t a b l i s h e d f o r
computer resources. (Reference AR 73–1)

Computer software configuration item
(CSCI)
A configuration item that is software. (Refer-
ence MIL-STD–973)

Configuration item (CI)
A n a g g r e g a t i o n o f h a r d w a r e , s o f t w a r e , o r
both that satisfies an end use function and is
designated by the Government for separate
configuration management. (Reference MIL-
STD–973)

Configuration management
A discipline applying technical and adminis-
trative direction and surveillance to (a) iden-
tify and document the functional and physical
c h a r a c t e r i s t i c s o f a c o n f i g u r a t i o n i t e m , (b)
control changes to those characteristics, and
(c) record and report change processing and
implementation status. (Reference MIL-STD-
973)

Cycle/system test
The final phase of developer information sys-
tems testing which involves the testing of

97DA PAM 73–7 • 25 July 1997

m o d u l e s / p r o g r a m s / c y c l e s w h i c h a r e i n t e -
grated into the total system.

Developer tests
Testing, modeling, and experimentation con-
ducted by the system developer. Formal tests
normally involve system level integration and
c e r t i f i c a t i o n b y t h e d e v e l o p e r w i t h f o r m a l
G o v e r n m e n t m o n i t o r i n g . I n f o r m a l t e s t s i n -
volve lower level code and unit development
with internal integration between system ele-
ments. Experimentation includes a wide vari-
ety of tests, models, development techniques
and simulations used to validate design con-
cepts and theories.

Developmental tests (DT)
Tests usually conducted by an organization
independent of the developer(s) in order to
validate total system conformance to techni-
cal and functional specifications and ensure
the system is ready for formal or limited user
testing. Formal tests focus primarily on total
systems integration.

Development tools
Products which are necessary to prepare, test
and evaluate software units currently under
development.

Driver
Software which controls a hardware device
or the execution of other programs.

Dynamic analysis
A test method that involves executing or sim-
ulating a product under development. Errors
are detected by analyzing the response of the
product to sets of input data.

Emulation
An interpretation similar to simulation, how-
ever, the interpretation is done through hard-
ware or microcode or the process of using
software or peripherals to make one set of
hardware operate like another.

Engineering change proposal - software
(ECP-S)
A term which includes both a proposed en-
gineering change and the documentation by
which the change is described and suggested.
DA Form 5005–R is used to document pro-
posed changes to software baselines and as-
sociated baseline documentation. (Reference
DA Pamphlet 25–6)

Firmware
A combination of hardware device and com-
puter instructions or computer data that re-
side as read-only software on the hardware
device. The software cannot be readily modi-
fied under program control.

Functional baseline
T h e i n i t i a l l y a p p r o v e d d o c u m e n t a t i o n d e -
scribing a system’s or item’s functional, in-
t e r o p e r a b i l i t y , a n d i n t e r f a c e c h a r a c t e r i s t i c s
and the verification required to demonstrate

the achievement of those specified character-
istics. (Reference MIL-STD–973)

Functional configuration audit (FCA)
A formal examination of the functional char-
acteristics of a configuration item, prior to
a c c e p t a n c e , t o v e r i f y t h a t t h e i t e m h a s
a c h i e v e d t h e r e q u i r e m e n t s s p e c i f i e d i n i t s
functional and allocated configuration docu-
mentation. (Reference MIL-STD–973)

Hardware configuration item (HWCI)
A configuration item that is hardware. (Ref-
erence MIL-STD–973)

Implementation procedures (IP)
A document which provides information to
users and data processing personnel to install
the AIS and achieve operational status.

Independent verification and validation
(IV&V)
S y s t e m a t i c e v a l u a t i o n p e r f o r m e d b y a n
agency that is not responsible for developing
the product or performing the activity being
evaluated. (Reference MIL-STD–973)

Interface
I n s o f t w a r e d e v e l o p m e n t , a r e l a t i o n s h i p
among two or more entities (such as CSCI-
CSCI, CSCI-HWCI, CSCI-user, or software
u n i t - s o f t w a r e u n i t) i n w h i c h t h e e n t i t i e s
share, provide, or exchange data. (Reference
MIL-STD–498)

Integrated product team (IPT)
A flexible and dynamic ad hoc group whose
participants come from all necessary func-
tional organizations in order to plan, manage,
implement and resolve a particular acquisi-
tion program issue. (Reference DODD 5000.
1, DOD 5000.2–R)

Interim change package (ICP)
A software modification release of ECP-Ss
w h i c h , b e c a u s e o f u r g e n c y , r e g u l a t o r y r e -
quirement or special need, must be provided
before the availability of the next scheduled
Software Change Package.

Interoperability
The ability of systems, units, or forces to
provide services to and accept services from
other systems, units or forces and to use the
services to enable them to operate effectively
together.

Issues and criteria
Issues are questions, the answers to which
permit the overall system evaluation. Criteria
are the quantitative or qualitative standards
by which issues are evaluated.

Left-of-baseline (LOB)
The manual and automated processes of ex-
tracting selected data and reducing them to
input file and transaction formats acceptable
for building or initializing a database for a
new system. Normally associated with con-
version requirements or parallel testing.

Materiel system computer resources
(MSCR)
Computer resources acquired for use as inte-
gral parts of weapons; command and control;
communications; intelligence and other tacti-
cal or strategic systems and their support sys-
tems. The term also includes all computer
r e s o u r c e s a s s o c i a t e d w i t h s p e c i f i c p r o g r a m
developmental T&E, operational testing, and
post deployment software support including
w e a p o n s y s t e m t r a i n i n g d e v i c e s , a u t o m a t i c
test equipment, land based test sites, and sys-
tem integration and test environments.

Metric
A quantitative value, procedure, methodolo-
gy, and/or technique which allows one the
ability to measure various aspects and char-
acteristics of software.

Nondevelopment item (NDI)
A generic term that covers material available
from a variety of sources with little or no
development effort required by the Govern-
ment. NDI may be referred to as reusable,
Government furnished, or commonly availa-
b l e s o f t w a r e , h a r d w a r e o r t o t a l s y s t e m s ,
depending upon the source. (Reference MIL-
STD–973)

Parallel testing
Testing that demonstrates whether or not two
versions of the same application are consis-
t e n t , o r t w o s y s t e m s p e r f o r m i n g t h e s a m e
function.

Physical configuration audit (PCA)
The formal examination of the “ as-built”
configuration of a configuration item against
i t s t e c h n i c a l d o c u m e n t a t i o n t o e s t a b l i s h o r
verify the configuration item’s product base-
line. (Reference MIL-STD–973)

Program
A separately compilable, structural (closed)
set of instructions most precisely associated
with early generations of computers. Synony-
mous with computer program.

Qualification testing
Testing performed to demonstrate to the con-
tracting agency that a CSCI or system meets
its specified requirements. (Reference MIL-
STD–498)

Recovery/reconfiguration testing
Testing that verifies the recovery process and
component parts’ effectiveness. It validates
t h a t e n o u g h b a c k u p d a t a i s p r e s e r v e d a n d
stored in a secure location.

Regression testing
Testing of a computer program and/or system
to assure correct performance after changes
were made to code that previously performed
correctly. Includes testing or retesting those
areas or aspects of a system which will or
could be affected by the changes.

Release
A configuration management action whereby

98 DA PAM 73–7 • 25 July 1997

a particular version of software or documen-
tation is complete and available for a specific
purpose (e.g., released for test). (Reference
MIL-STD–973)

Representative sample
For a program using an incremental acquisi-
tion strategy, the representative sample is the
increments that will be used as the basis for a
fielding decision. The chief characteristic of
these increments is that they must constitute
a self-sufficient package, i.e., they can stand
alone.

Required operational characteristics
Qualitative and quantitative system perform-
ance parameters, proposed by the user and
approved by the Army, that are primary indi-
cators of a system’s capability to accomplish
its mission (operational effectiveness) and to
b e s u p p o r t e d (o p e r a t i o n a l s u i t a b i l i t y) . R e -
quired operational characteristics are usually
tested and evaluated by operational testing
and evaluation to ascertain achievement of
a p p r o v e d g o a l s a n d t h r e s h o l d s f o r t h e s e
characteristics.

Required technical characteristics
Quantitative system performance parameters
approved by the Army management that are
s e l e c t e d a s p r i m a r y i n d i c a t o r s o f t e c h n i c a l
a c h i e v e m e n t . T h e s e m i g h t n o t b e d i r e c t
measures of, but always should relate to a
system’s capability to perform its required
mission function and to be supported. Re-
q u i r e d t e c h n i c a l c h a r a c t e r i s t i c s u s u a l l y a r e
t e s t e d a n d e v a l u a t e d t o a s c e r t a i n a p p r o v a l
goals and thresholds for these characteristics.

Requirements trace
A s s u r i n g r e q u i r e m e n t s f l o w f r o m t h e u s e r
specifications through design and implemen-
tation of the product.

Right-of-baseline (ROB)
The automated process of building a database
from LOB products, or the initialization of
new files introduced for the first time. Nor-
m a l l y a s s o c i a t e d w i t h c o n v e r s i o n r e q u i r e -
ments or parallel testing.

Simulation
The process of conducting experiments with
a model for the purpose of understanding the
behavior of the system. Simulations may be
d y n a m i c , e n g i n e e r i n g (s c i e n t i f i c) , e n v i r o n -
mental, instruction level, statement level, and
s y s t e m l e v e l . F o r A I S , s i m u l a t i o n e n t a i l s
summary files to simulate an internal or ex-
ternal interface input.

Software acceptance test (SAT)
A o p e r a t i o n a l t e s t o f a n e w s y s t e m o r
changes to a deployed system, directed by an
independent tester and conducted in a field
environment using a production database and
executed on target hardware.

Software change package (SCP)
One or more changes which have been ap-
proved and scheduled for implementation, as

a g r o u p , b y t h e a p p r o p r i a t e c o n f i g u r a t i o n
control board IAW MIL-STD–973.

Software development
A set of activities that results in software
products. Software development may include
new development, modification, reuse, reen-
gineering, maintenance, or any other activi-
ties that result in software products.

Software development file (SDF)
A repository for material pertinent to the de-
velopment or support of a particular body of
software. Contents typically include (either
directly or by reference) considerations, ra-
t i o n a l e , a n d c o n s t r a i n t s r e l a t e d t o r e q u i r e -
ments analysis, design, and implementation;
d e v e l o p e r i n t e r n a l t e s t i n f o r m a t i o n ; a n d
schedule and status information.

Software development library (SDL)
A c o n t r o l l e d c o l l e c t i o n o f s o f t w a r e , d o c u -
mentation, other intermediate and final soft-
w a r e p r o d u c t s , a n d a s s o c i a t e d t o o l s a n d
procedures used to facilitate the orderly de-
v e l o p m e n t a n d s u b s e q u e n t s u p p o r t o f
software.

Software engineering environment (SEE)
The facilities, hardware, software, firmware,
p r o c e d u r e s , a n d d o c u m e n t a t i o n n e e d e d t o
perform software engineering. Elements may
included, but are not limited to CASE tools,
compilers, assemblers, linkers, loaders, oper-
a t i n g s y s t e m s , d e b u g g e r s , s i m u l a t o r s ,
emulators, documentation tools, and database
management systems.

Software test environment
The facilities, hardware, software, firmware,
p r o c e d u r e s , a n d d o c u m e n t a t i o n n e e d e d t o
perform qualification, and possibly other, tes-
ting of software. Elements may include but
are not limited to simulators, code analyzers,
test case generators, and path analyzers, and
may also include elements used in the soft-
ware engineering environment.

Software qualification test (SQT)
Independent developmental test conducted on
a target system, but normally not in an opera-
tional environment.

Software transition
The set of activities that enables responsibil-
ity for software development to pass from
o n e o r g a n i z a t i o n , u s u a l l y t h e o r g a n i z a t i o n
that performs initial software development, to
a n o t h e r , u s u a l l y t h e o r g a n i z a t i o n t h a t w i l l
perform software support.

Software unit
An element in the design of a CSCI; for
example, a major subdivision of a CSCI, a
component of that subdivision, a class, ob-
ject, module, function, routine, or database.
Software units may occur at different levels
of a hierarchy and may consist of other soft-
ware units. Software units in the design may
or may not have a one-to-one relationship

with the code and data entities (routines, pro-
cedures, database, data files, etc.) that imple-
m e n t t h e m o r w i t h t h e c o m p u t e r f i l e s
c o n t a i n i n g t h o s e e n t i t i e s . (R e f e r e n c e M I L -
STD–498)

Statement of work (SOW)
A statement of contract requirements that is
u s e d f o r d e f i n i n g a n d a c h i e v i n g p r o g r a m
goals. The SOW provides the basic frame-
work for a particular effort. It is a document
by which all nonspecification requirements
for developer efforts must be established and
defined either directly or with the use of spe-
cific cited documents.

Static analysis
A direct examination of the form and struc-
ture of a product without executing the prod-
u c t . I t m a y b e a p p l i e d t o r e q u i r e m e n t s ,
design, or code.

Stress test
A test which exercises code up to, including
and beyond all stated limits in order to exer-
cise all aspects of the system (e.g., to include
hardware, software, and communications). Its
purpose is to insure that response times and
storage capacities meet requirements.

Supplemental site test
Testing conducted on systems that execute in
multiple hardware and operating system envi-
r o n m e n t s o r f o r c o n d i t i o n s / f u n c t i o n s n o t
readily available at a primary test site. (Ref-
erence AR 73–1)

Supportability
The degree to which a system can be main-
t a i n e d o r s u s t a i n e d i n a n o p e r a t i o n a l
environment.

System change package
A g r o u p o f m o d i f i c a t i o n s d o c u m e n t e d o n
ECPs which are packaged and implemented
during post deployment phase.

System decision paper
T h e p r i m a r y d o c u m e n t u s e d t o o b t a i n
MAISRC approval for information systems.
Also contains information comparable to the
MSCR CRLCMP.

System post deployment review (SPR)
A review conducted after deployment of the
initial system to evaluate how well the opera-
tional system is satisfying user requirements.

System specification
A system level requirements specification. A
system specification may be a system/subsys-
t e m s p e c i f i c a t i o n , p r i m e i t e m d e v e l o p m e n t
s p e c i f i c a t i o n , o r c r i t i c a l i t e m d e v e l o p m e n t
specification). (Reference MIL-STD–498)

Target system
Suite of hardware, or hardware and software
designated as the operational configuration of
the system.

Test and evaluation master plan (TEMP)
The key management tool for control of the

99DA PAM 73–7 • 25 July 1997

integration of all T&E requirements for each
acquisition effort and is used by decision re-
view bodies. (Reference DODI 5000.1, DOD
5000.2–R)

Testbed
A system representation consisting partially
of hardware and/or software and partially of
computer models or prototype hardware and/
or software.

Test hooks
Software logic integrated into a system to
facilitate extraction of data to support test
and analysis.

Test IPT
Established by the program sponsor upon re-
c e i p t o f t h e d r a f t o p e r a t i o n a l r e q u i r e m e n t s
document or mission needs statement. This is
the primary group which facilitates integra-
tion of T&E requirements and prepares the
TEMP.

Unit testing
The lowest level developer test of software.

User or operational tests
A system level test performed by a test activ-
ity independent of the developer or the PM.
The objective of operational testing is to ex-
amine the entirety of the system and is per-
f o r m e d b y u s e r s i n a n o p e r a t i o n a l
environment.

Validation
The process of evaluating software to deter-
m i n e c o m p l i a n c e w i t h s p e c i f i e d
requirements.

Verification
The process of evaluating the products of a
given software development activity to deter-
m i n e c o r r e c t n e s s a n d c o n s i s t e n c y w i t h
respect to the products and standards pro-
vided as an input to that activity.

Version
An identified and documented body of soft-
ware. Modifications to a version of software
(resulting in a new version) require configu-
ration management actions by the developer,
the Government or both. (Reference MIL-
STD–973)

Walk-through
An informal, step-by-step review of a soft-
ware product during development (i.e., pro-
gram code, test scenario, functional design)
which allows feedback from other members
of the development team to the creator of the
particular product being reviewed.

Section III
Special Abbreviations and Terms
This publication uses the following abbrevia-
tions, brevity codes, and acronyms not con-
tained in AR 310–50.

Ao
operational availability

AAE
Army Acquisition Executive

ACAT
acquisition category

ACWP
actual cost of work performed

AIN
Army Interoperability Network

AIS
automated information system

AOI
additional operational issues

AQP
automation quality plan

ASARC
Army Systems Acquisition Review Council

ASDP
accelerated software development process

ATCOM
Aviation and Troop Command

ATE
automated test equipment

ATIRS
Army test incident reporting system

BCWP
budgeted cost of work performed

BCWS
budgeted cost of work scheduled

BMTF
benchmark test files

CASE
computer aided software engineering

CBTDEV
combat developer

CDRL
contract data requirements list

CEPT
concept evaluation program test

CMM
capability maturity model

CMU
Carnegie Mellon University

COIC
critical operational issues and criteria

COTS
commercial off-the-shelf

CPI
cost performance index

CPM
computer programming manual

CRISD
c o m p u t e r r e s o u r c e s i n t e g r a t e d s u p p o r t
document

CRLCMP
c o m p u t e r r e s o u r c e s l i f e c y c l e m a n a g e m e n t
plan

CRMP
computer resources management plan

CRU
computer resource utilization

CRWG
computer resources working group

C/SCSC
cost/schedule control systems criteria

CSCI
computer software configuration item

CSE
Center for Software Engineering

CSOM
computer system operator’s manual

CSU
computer software unit

DAA
designated accreditation authority

DAB
Defense Acquisition Board

DBDD
database design description

DEVLIB
development library

DIL
Digital Integration Laboratory

DISC4
Director of Information Systems for Com-
m a n d , C o n t r o l , C o m m u n i c a t i o n s , a n d
Computers

DODISS
Department of Defense Index of Specifica-
tions and Standards

DTRR
developmental test readiness review

DTRS
developmental test readiness statement

ECP-S
engineering change proposal - software

100 DA PAM 73–7 • 25 July 1997

EIA
Electronic Industries Association

EUE
early user experimentation

EUT
early user test

EUTE
early user test and experimentation

FAT
first-article test

FCA
functional configuration audit

FD
functional description

FDE
force development experiment

FD/SC
failure definition/scoring criteria

FDT
force development test

FOT
follow-on operational test

FP
functional proponent

FQT
formal qualification test

FSM
firmware support manual

GCCS
Global Command and Control System

HWCI
hardware configuration item

IAP
independent assessment plan

IAR
independent assessment report

IDD
interface design description, interface design
document

IEC
International Electrotechnical Commission

IEEE
I n s t i t u t e o f E l e c t r i c a l a n d E l e c t r o n i c s
Engineers

IMA
information mission area

IOT
initial operational test

IRS
interface requirements specification

ISC
Information Systems Command

ISEC
Information Systems Engineering Command

IV&V
independent verification and validation

JITC
Joint Integrated Test Center

JT
joint test

KPA
key process area

LCSEC
Life Cycle Software Engineering Center

LEA
Logistics Evaluation Agency

LOB
left-of-baseline

LUT
limited user test

MAIS
major automated information system

MAISRC
M a j o r A u t o m a t e d I n f o r m a t i o n S y s t e m R e -
view Council

MANPRINT
manpower and personnel integration

MATDEV
materiel developer

MCCR
mission critical computer resources

MDAP
major defense acquisition program

MEDCOM
Medical Command

MICOM
Missile Command

MNS
mission needs statement

MRRB
Materiel Release Review Board

MSCR
materiel system computer resources

NBS
National Bureau of Standards

NDI
nondevelopment item

OCD
operational concept description

OMS/MP
operational mode summary/mission profile

OPTEC
Operational Test and Evaluation Command

ORD
operational requirements document

OTP
outline test plan

OTRR
operational test readiness review

OTRS
operational test readiness statement

PDL
program design language

PDSS
post deployment software support

PPQT
pre-production qualification test

PR
problem report

QIO
Quality Improvement Office

ROB
right-of-baseline

RRR
RAM rationale report

SCMP
software configuration management plan

SCOM
software center operator manual

SDC-L
Software Development Center - Lee

SDC-W
Software Development Center - Washington

SDL
software development library

SDT
software development test

SEE
software engineering environment

SEI
Software Engineering Institute

SER
system evaluation report

101DA PAM 73–7 • 25 July 1997

SIOM
software input/output manual

SLOC
source line(s) of code

SMERFS
Statistical Modeling and Estimation of Relia-
bility Functions for Software

SMMP
system MANPRINT management plan

SPCR
software problem/change report

SPI
schedule performance index

SQA
software quality assurance

SQPP
software quality program plan

SRTM
software requirements traceability matrix

SRS
software requirements specification

SSDD
s y s t e m / s e g m e n t d e s i g n d o c u m e n t , s y s t e m /
subsystem design description

SST
supplemental site test

STD
software test description standard

STP
software test plan

STR
software test report, software trouble report

STrP
software transition plan

SVD
software version description

S/W
software

TAFIM
technical architecture framework for informa-
tion management

T&E
test and evaluation

TEMP
test and evaluation master plan

TEXCOM
Test and Experimentation Command

TIR
test incident report

TQM
total quality management

UAT
user acceptance test

UM
user manual

US
software unit specification

VDD
version description document

V&V
verification and validation

WIPT
working-level integrated product team

102 DA PAM 73–7 • 25 July 1997

Index
T h i s i n d e x i s o r g a n i z e d a l p h a b e t i c a l l y b y
topic and subtopic. Topics and subtopics are
identifed by paragraph number and appendix
(when appropriate).

Abbreviations and terms, 1–3
Accelerated software development process,

3–3, 6–47, 6–54
Acquisition category, 1–9, 3–3, 4–3, 5–6,

10–2
Acquisition strategy

Development activities, affect on, 5–2, 6–2,
7–2, 8–2

Operational tests, 1–11
Software development strategy, 3–6
T e s t a n d e v a l u a t i o n c o n s i d e r a t i o n s , 3 – 3 ,

4–6

Baseline, 8–4
Allocated, 5–40, 8–4
Design, stability of, 10–13
Faults in software, 10–17, 10–18
Formal tests, changes to software, 6–42,

6–46, 6–50, 6–54
Formal tests, software, 6–41, 6–49
Functional, 5–33, 8–4
Product, 6–42, 7–2, 8–2, 8–4, 9–5
Requirements, changes in, 10–15, 10–20

Breadth of testing metric, 10–15

Capability maturity model, 1–9, 10–10
Complexity metric, 10–14
Computer resource utilization metric, 10–9
Computer resources life cycle management

plan (CRLCMP), 5–15, 7–14, 10–19
Preparing and maintaining, 4–6, 5–9, 8–2

Configuration control, 8–4, 8–7
Configuration control board (CCB), 8–4,

10–12
C o n f i g u r a t i o n m a n a g e m e n t (C M) , 3 – 1 0 ,

8–4
CM organization, 1–6, 4–3, 4–4
Documentation, 5–9, 8–2
R e a d i n e s s r e v i e w c o n s i d e r a t i o n s , 6 – 4 2 ,

6–50
Continuous evaluation (CE), 1–6, 1–7

Activities, 1–8, 1–9
A c t i v i t i e s , f i e l d i n g a n d t r a n s i t i o n , 7 – 8 ,

7–16
Activities, pretest, 5–10, 5–17, 5–24, 5–31,

5–38, 5–45
A c t i v i t i e s , t e s t , 6 – 8 , 6 – 1 5 , 6 – 2 2 , 6 – 2 9 ,

6–36, 6–43, 6–51
Objective, 1–7
Software T&E, factors in, 1–12, 3–2, 4–4

C o r r e c t i v e a c t i o n s y s t e m , 8 – 7 , 1 0 – 1 2 ,
10–17, 10–18

Cost metric, 10–7
C r i t i c a l o p e r a t i o n a l i s s u e s a n d c r i t e r i a

(COIC)
Documenting, 5–8
Evaluating, 6–50, 6–51
Retesting in PDSS, 9–7

Critical technical parameters
Documenting, 5–8
Evaluating, 6–40
Retesting in PDSS, 9–7

Depth of testing metric, 10–16
Design stability metric, 10–13
Development progress metric, 10–20

Engineering change proposal (ECP), 9–2
E n g i n e e r i n g c h a n g e p r o p o s a l - s o f t w a r e

(ECP-S), 6–43, 8–4, 9–5, 10–12

F a i l u r e d e f i n i t i o n / s c o r i n g c r i t e r i a , 6 – 4 2 ,
6–50, 10–18

Fault profiles metric, 10–17

I n d e p e n d e n t v e r i f i c a t i o n a n d v a l i d a t i o n
(IV&V). See Verification and validation

Inspection, 1–9, 3–12, 8–6
Integrated product team (IPT), 1–1, 1–9,

1–11, 3–2, 3–3, 4–6, 8–5
Computer resources IPT, 4–6, 5–9
Test IPT, 4–6, 5–8, 6–41, 6–49, 9–7

Interoperability
Software T&E considerations, 1–10, 1–11
Requirements, evaluating, 5–31, app B
System testing, 6–42, 6–50
Evaluating system, 6–43, 6–46, 6–51
Materiel release, 7–11
Retesting in PDSS, 9–7

MAIS quarterly report, 8–9, 10–2, 10–21
Manpower metric, 10–19
Materiel release, 4–4, 7–2, 7–6, 7–11, 7–16
Metrics

A p p l i c a b l e t o s o f t w a r e a c t i v i t y , 5 – 1 1 ,
5 – 1 8 , 5 – 2 5 , 5 – 3 2 , 5 – 3 9 , 5 – 4 6 , 6 – 9 ,
6 – 1 6 , 6 – 2 3 , 6 – 3 0 , 6 – 3 7 , 6 – 4 4 , 6 – 5 2 ,
7–9, 7–17

Categories of, 10–3
D e v e l o p m e n t p l a n n i n g f o r , 5 – 9 , 1 0 – 3

through 10–5, app B
Relationship to T&E, 3–9

Minimum acceptable operational perform-
ance requirements, 5–8

Modeling and simulation, 3–2, 3–13, 5–10,
10–18

Nondevelopment items
Material release considerations, 7–11
Operational test bed, components of, 6–54
Development strategy, components of, 3–3,

3–6, 5–24, 5–31, 5–38
Retesting in PDSS, 9–7
Unique T&E considerations, 3–6

Operational mode summary/mission pro-
file (OMS/MP), 10–9, 10–18

Policy
Acquisition reform, 1–13, 10–2
Basis of software T&E, 1–4, 3–2
Continuous evaluation, 1–1, 5–7
Metrics, 10–2
P r o g r e s s r e p o r t i n g . S e e M A I S q u a r t e r l y

report.
Testing, 1–1, 1–4, 6–46, 6–54

Post deployment software support (PDSS),
9–1, 9–2
Agent, 4–3, 4–6, 6–42, 7–2
A g e n t a c t i v i t i e s , 7 – 8 , 6 – 4 6 , 6 – 5 0 , 9 – 4 ,

9–8, 10–11
D e f i c i e n c i e s , E C P - S s a n d S C P s , 9 – 3

t h r o u g h 9 – 5 . S e e a l s o E n g i n e e r i n g
c h a n g e p r o p o s a l - s o f t w a r e ; S o f t w a r e
change package

Life cycle phase, 1–4, 9–2
Operational testing in, 6–54, 9–6

Prototypes
C a p a b i l i t y d e m o n s t r a t i o n s , u s e i n , 3 – 7 ,

5–44

Definition and purpose, 3–7
Design stability, affect on, 10–13
Operational use of, 3–7
Refining requirements, use in, 3–7, 10–11,

10–12

Quality assurance, 3–10, 8–6
QA organization, 1–6, 2–2, 4–4, 6–8, 6–15
Documentation, 5–9, 8–2

Regression testing
Emergency changes, requirements for, 9–8
Formal tests, requirements for, 6–46, 6–54
S o f t w a r e p r o b l e m / c h a n g e r e p o r t s , r e s o l u -

tion of, 10–17
Software requirements traceability matrix,

use for, 10–11
Testing progress metrics, affect on, 10–15,

10–16
Reliability metric, 10–18
Requirements stability metric, 10–12
Requirements traceability metric, 10–11
Reuse

MAIS assessment of, 10–21
Software development strategy, component

of, 3–6, 5–9
Software requirements aspects, evaluating,

5–38
System design aspects, evaluating, 5–31,

10–13, 10–14
S y s t e m r e q u i r e m e n t s a s p e c t s , e v a l u a t i n g ,

5–24
Test materials in PDSS, 9–8

Risk management
Acquisition strategy, selecting, 3–3
Activity, 8–2
Continuous evaluation, 1–7
Formal reviews, 5–24, 5–31, 5–38, 5–45,

6–22, 6–36, 8–8
Metrics, 3–2, 10–2
Reporting, 8–8, 8–9
Development planning, 5–9
Software T&E, 1–5, 3–1, 3–2

Schedule metric, 10–8
Security

Accreditation, 3–2, 3–8, 6–50
Certification, 3–2, 3–8, 6–42, 6–50
Fielding and transition, 7–8, 7–16
Retesting in PDSS, 9–7
System design aspects, evaluating, 5–31
S y s t e m / s o f t w a r e r e q u i r e m e n t s a s p e c t s ,

evaluating, 5–24, 5–38
T e s t p r o g r a m c o n s i d e r a t i o n s , 3 – 4 , 3 – 5 ,

6–43, 6–51
Software change package (SCP), 9–2

D e t e r m i n i n g i n d e p e n d e n t e v a l u a t i o n s u p -
port for, 9–7

PDSS T&E strategy, 9–4
Software development activities

Corrective action, 8–7, 10–7
C S C I q u a l i f i c a t i o n t e s t i n g , 6 – 1 8 t h r o u g h

6–24, 10–7
CSCI/HWCI integration and testing, 6–25

through 6–31, 10–7
Joint reviews, 8–8
Planning and oversight, 5–4 through 5–12,

10–7
Software configuration management, 8–4,

1 0 – 7 , 1 0 – 1 0 . S e e a l s o C o n f i g u r a t i o n
management

Software design, 5–41 through 5–47, 10–7

103DA PAM 73–7 • 25 July 1997

Software development environment, 5–13,
10–7, 10–9

Software fielding, 7–4, 10–7
Software implementation and unit testing,

6–4 through 6–10, 10–7
Software product evaluation, 8–5, 10–7
Software quality assurance, 8–6, 10–7. See

also Quality assurance
S o f t w a r e r e q u i r e m e n t s a n a l y s i s , 5 – 3 4

through 5–40, 10–7
S o f t w a r e t r a n s i t i o n , 7 – 1 2 t h r o u g h 7 – 1 8 ,

10–7
System design, 5–27 through 5–33, 10–7
S y s t e m d e v e l o p m e n t a l t e s t i n g , 6 – 3 9

through 6–46, 10–15
System operational testing, 6–47 through

6–54, 10–15
System qualification testing, 6–32 through

6–38, 10–7, 10–15
S y s t e m r e q u i r e m e n t s a n a l y s i s , 5 – 2 0

through 5–26, 10–7, 10–12
Unit integration and testing, 6–11 through

6–17, 10–7, 10–20
Software development plan, 5–9
Software engineering environment metric,

10–10
S o f t w a r e f a u l t s . S e e S o f t w a r e p r o b l e m s /

failures
Software problems/failures

Categories, 2–2, 8–7, 10–17
C r i t e r i a f o r d e d i c a t e d o p e r a t i o n a l T & E ,

6–50, 6–54, 10–17
Priorities, 2–2, 8–7, 10–17
P r o b l e m / c h a n g e r e p o r t s (P C R s) , 5 – 1 0 ,

6–42, 6–46, 6–50, 6–54, 10–17, 10–18
Test incidents reports (TIRs), 2–2, 6–42,

6–46, 6–50, 6–54, 8–7, 10–18
Software maintainability evaluation, 6–43,

6–46, 6–50, 6–51, 7–16
Software requirements traceability matrix

(SRTM), 10–11
Software test plan, 5–8

Test
Independence in, 1–10, 3–8, 4–4, 4–5
M e t h o d s , 3 – 1 1 t h r o u g h 3 – 1 5 , 1 0 – 1 4 ,

10–16
Requirements, relationship to, 1–10, 1–11
Strategy, incremental, 1–10
Software, 1–10, 1–11, 2–2, 3–1, 3–2, 3–4.

See also Software development activities
S o f t w a r e c o m p l e x i t y c o n s i d e r a t i o n s ,

10–14, 10–16
System, 1–10, 1–11, 2–2, 3–2, 3–4, 3–5.

See also Software development activities
Test and evaluation master plan (TEMP)

Documenting, 5–8
Exit criteria, 5–8, 8–8
Preparing, 4–6
Validating requirements from, 6–40, 6–41,

6–43, 6–48, 6–49, 6–51, 10–11

Users’ functional description (UFD), 2–2,
5–6, 10–11, 10–15

Verification and validation (V&V),
Development planning, 5–9, 8–2
V&V organization 1–6, 4–4

104 DA PAM 73–7 • 25 July 1997

Unclassified PIN 075103–000

USAPA
ELECTRONIC PUBLISHING SYSTEM
TEXT FORMATTER ... Version 2.61

PIN: 075103–000
DATE: 06-21-99
TIME: 15:45:43
PAGES SET: 108

DATA FILE: p73.fil
DOCUMENT: DA PAM 73–7
DOC STATUS: NEW PUBLICATION

